## CHARMES GRIFIN \& COMPANYS



NAUTICAI. SERIES



## LATMUDE AND LONGITUDE

# Charles Griffin \& Company's Nautical Series. 

LA'TITUDE AND LONGITUDE:<br>HOW TO FIND THEM. W. J. MIIIIAR, C.円.

# GRIFFIN'S NAUTICAL SERIES. 

Edited by EDW. BLACKMORE, Master Mariner, First Class Trinity House Certiflcate, Assoc. Inst. N.A.; and Written, mainly, by Satlors for Sailors.


#### Abstract

"This admirable series."-Fairplay. "A very uskful series."-Nature. "The volumes of Messrs. Griffin's Nautical Series may well and profitably be read by all interested in our national maritime progress."-Marine lingineer. "Every Ship should have the whole Series as a Reference Library. Hand. sombly bound, olearly printed and illustrathd."-Liverpool Journ. of Commerce.


The British Mercantile Marine: An Historical skerch of its and Development. By the Editor, Capt. Blackmore. 3s. 6d.
"Captain Blackmore's SPLENDID BOOK . . . contains paragraphs on every poin" of interest to the Merchant Marine. The 243 pages of this book are the most valuable to the sea captain that have ever been Complled."-Merchant Service Review.

Elementary Seamanship. By D. Wilson-Barkek, Mastel Marner, F.R.S.E., F.R.G.S. With numerous Plates, two in Colours, and Frontispiece. Third Edition, Thoroughly Revised, Enlarged, and Re-set. With additional Illustrations. 6s.
"This admirable mandal, by Capt. Wilson Barker, of the 'Worcester, seems to us perpeothy designed."-Athenarum.

Know Your Own Ship: A Simple Explanation of the Stability, Construction, Tonnage, and Freeboard of Ships. By Thos. Walion, Naval Architect. With numerons Illustrations and additional Chapters on Buoyancy, Trim, and Oalculations. GIXTH EDition, Revised. 78. 6d.
"Mr. WALPON's book will be found VERY USBPUL."-The Engineer.
Navigation: Theoretical and Practical. By D. Wilson-Barker, Master Mariner, ac., and Whlinm Alliskeham. 3s. 6d.
"Praorsely the kind of work required for the Now Certificates of competency. Candidates will find it invaluable"-Demdee Advertiser.
Marine Meteopology : For Offioers of the Merchant Navy. By Whluam allimanam, First Olass Honours, Navigation, Seienoe and Art Department With Illustrations, Maps, and Diagrams, and fassimile reproduction of log page. 78. 6d.
"Quite the best publidartion on this subject."-Shipping Gazette.
Latitude and Longitude: How to find them. By W. J. Millar, C.E., late Sec. to the Inst. of Engineers and Shipbuilders in Scotland. SECOND Edition, Revised. 28.
"Cannot but prove an acquisitfon to those stadying Navigation."-Marine Engineer.
Practical Mechanies: Applied to the requirements of the Sailor. By Thos. MAGKenzie, Master Mariner, F.R.A.S. SEComd Edition, Revised. 3s. 6d. "Well worth the money . . . ExGxedisgly helpyul."-Shipping World.
Trigonometry : For the Yoang Sailor, \&c. By Rich. C. Buck, of the Thames Nautical Training Oollege, H.M.S. "Worcester." Sbcond Edition, Revised. Price 3s. 6d.
"This eminently practical and reliable volume "-Schoolmaster.
Practical Algebra. By Ricr. C. Bucz. Companion Volume to the above, for Sailors and others. Price 3s. 6d.
"It ie JUST THE BOOK for the young sailor mindful of progress. - Nartical Magazine.
The Legal Duties of Shipmasters. By Benkdict Wm. Ginsburg, M.A., LL.D., of the Inner Temple and Northern Cireuit : Barrister-at-Law. Price 4s. $6 d$.
"Invaluable to masters. . . We can fully recommend it."-Shipping Gazette.
A Medical and Surgical Help for Shipmasters. Including Firso Aid at Sea. By WM. Johnson Smith, F.R.C.S., Prinoipal Medical Officer, Seamen's Hospitai, Greenwich. Skcond Edition, Revised. 6s. "SOUND, JUDIC!OOS, REALLY HELPFUL."-The Lancet.
LONDON: CHARLES GRIFFIN \& CO.. LIMITED, EXETER STREET, STRAND.

# LATITUDE <br> AND <br> L O N G I T U D E : 

HOW TO FIND THEM.

## BY

W. J. MILLAR, C.E.,

MEMBER OF THE EDINBURGH MATHEMATICAL SOCIETY; LATE SECRETARY, institution of engineers and shipbuildeers in sootland ;

AUTHOR OF "AN INTRODUOTION TO THE DIFEERENTLAL
and integral calculus," etc.

## SECOND EDITION, REVISED.

ひuitb Diagrams.

## LONDON:

## OHARLES GRIFFIN AND OOMPANY, LIMITED;

 EXETER STREET, STRAND.1903. 

[All Rights Reserved.]

$$
6
$$

## EDITOR'S PREFATORY NOTE.

This Series has been designed to meet the growing desire on the part of Officers in the Mercantile Marine for a more scientific insight into the principles of their profession, and the sciences upon which the Art of Navigation is founded. The treatises are, for the most part, written by Sailors for Sailors; and, where this is not the case, by authors who have special knowledge of the subjects dealt with and their application to the Sailor's life. The treatment will be thoroughly scientific, yet as free as possible from abstruse technicalities, and the style such as will render it easy for the young sailor to gain a knowledge of the elements of his profession by private reading and without difficulty.
E. B.

London, April, 1896.

## AUTHOR'S PREFACE.

THe object of the Author in the present work is to present to the reader, in a simple manner, some of those problems that relate to the finding of position at Sea, by means of Altitudes of the Sun or Stars. No attempt is made to go beyond this, as the Student of Navigation must refer to more complete treatises for a mastery of the subject. It is hoped, however, that the diagrams and examples may assist in conveying to the reader a definite conception of the principles underlying the well-known methods adopted for determining Latitude and Longitude at Sea.

Glasgow, April, 1896.

## CONTENTS.

## INTRODUCTORY.

PAGE
Mathematical Expressions, ..... 1
LATITUDE AND LONGITUDE.
Latitude, ..... 10
Longitude, ..... 10
Fixing Position by Co-ordinates, ..... 12
Altitude and Horizon, ..... 14
Parallax, ..... 15
Declination, ..... 18
Refraction, ..... 19
Local and Greenwich Time, ..... 19
Finding the Latitude (the Sextant), ..... 21
Artificial Horizon, ..... 25
Finding the Longitude, ..... 25
Polar Distance, Declination, and Hour Angle, ..... 27
Determination of the Time, ..... 31
Right Ascension, ..... 38
To Find the Longitude by Lunar Distance, ..... 40
Azimuth, ..... 45
Amplitude, ..... 47
Sumner's Method of Finding the Longitude, ..... 48
Longitude from Observation at Sunset, ..... 53

## LATITUDE AND LONGITUDE:

HOW TO FIND THEM.

## INTRODUCTORY.

## MATHEMATICAL EXPRESSIONS.

To those who have not much acquaintance with mathematical expressions, the following notes may be of service before proceeding to the subject proper of the book itself :-

Proportions.-Proportions or ratios are expressed as follows:-

$$
\text { (1) } 2: 4:: 8: 16 \text {, or (2) } \frac{2}{4}=\frac{8}{16}
$$

In (1) we have a proportion stated in the form of 2 is to 4 as 8 is to 16.

In (2) we have 2 divided by 4 equal to 8 divided by 16, and this also forms an equation-that is to say, the one side of the statement is equal to the other.

The form in which the first of these expressions (1) is stated is commonly used in simple proportion, or the Rule of Three, where we have the question appearing in such a form as $2: 4:: 8: x, x$ being an unknown quantity, and one which we wish to know. To find $x$, we multiply the 4 by the 8 , and divide by the 2. The result or quotient is equal to $x$. Thus $\frac{4 \times 8}{2}=16$.

In the fractional form shown by (2) we have $\frac{2}{4}=\frac{8}{x}$, and to find the value of $x$ we may proceed as tollows :-Multiply both sides of this equation by 4 , and we have $2=\frac{32}{x}$; multiply both
sides by $x$, and we have $2 x=32$. Divide both sides by 2 , and we have $x=16$.

It will be noticed here that whatever we do on one side of the equation we must do the same on the other, as otherwise the two sides would not continue equal during the working out of the unknown part of the equation.

Angles.-Angles are measured in certain equal parts called degrees.

Thus the whole circle is supposed to be divided into 360 equal parts or degrees; if we take four equal large divisions

or quadrants of the circle, such as $\mathrm{A} \mathrm{B}, \mathrm{BC}, \mathrm{CD}$, and D A , we have in each of these $\frac{360}{4}=90$ degrees. That is to say, the arc or part of the circle $\mathbf{B C}$ is supposed to be divided into 90 equal parts ; for the purposes of accurate measurement, each of these parts is supposed to be divided into 60 equal parts called minutes, and each of these again into further subdivisions of 60 equal parts called seconds.


So that an angle or arc measuring, say, 51 degrees, 48 minutes, 35 seconds, would be written thus :- $51^{\circ} 48^{\prime} 35^{\prime \prime}$

If the angle EOC be taken away from the angle BOC, we have the angle BOE left; this angle is called the complement of EOC. Thus if EOC=45 , then $90^{\circ}-45^{\circ}=45^{\circ}$; and if E OC $=30^{\circ}$, then $90^{\circ}-30^{\circ}=60^{\circ}$; $45^{\circ}$ and $60^{\circ}$ are, therefore, the complements of $45^{\circ}$ and $30^{\circ}$

Again, if the angle EOC be taken from the sum of the right angles AOB and BOC, we have the angle AOE left; it is called the supplement of EOC. Thus, if EOC be $60^{\circ}$, then $180^{\circ}-60^{\circ}=120^{\circ}$; and this is the supplement of the angle $60^{\circ}$.

Triangles.-Let ABC be a right-angled triangle, and let the sides AC and BC be equal to each other. The

angle A C B is $=90^{\circ}$, and the angle B A C and A B C are each equal to $45^{\circ}$, because the three angles of a triangle are equal to two right angles, and the angles at A and B are complementary to each other, as together they make one right angle or $90^{\circ}$.

Again, in the right-angled triangle DEF let the side E F be one-half of $\mathrm{D} E$, then the angles at D and E are respectively

equal to $30^{\circ}$ and $60^{\circ}$; also in the equilateral (equal sided) triangle GHI, the three sides being equal, the three angles at $G, H$, and $I$ are also equal, and they each measure $60^{\circ}$, because $60^{\circ}+60^{\circ}+60^{\circ}=180^{\circ}$.

Now, if the sides of triangles varied in length in the same ${ }^{\circ}$ proportion as the angles, it would be very easy to measure the various parts. Thus, in the triangle D E F, if the side D E be made equal to 10 , the side EF will be equal to 5 , and side D F to 8.7 nearly. The sides have, therefore, the following values, 10,5 , and $8 \cdot 7$, and the angles opposite the sides, $90^{\circ}, 30^{\circ}$,
and $60^{\circ}$. Here it will be seen that although the side E F is onehalf of the side D E, yet the angle at D (opposite to the side E F) being $30^{\circ}$, is only one-third of the angle at F (opposite the side DE), which is $90^{\circ}$; hence the sides do not vary as the angles opposite them.

In the above example we have taken the value of the sides of the triangle D E F as 10,5 , and $8 \cdot 7$; the relations of the sides and angles would be just the same supposing we take any other values in the same proportions. Thus, let the above values be all divided by 10 , then we have $1, \cdot 5$, and $\cdot 866$ as the values of the sides.

In this case the hypothenuse (or side opposite the right angle) is equal to 1 (or unity), and the other sides to decimal parts of 1 .

It is the province of trigonometry to discuss these questions, and from it we find that the sides of triangles vary as the sines of the angles opposite them.

As it is important that this should be thoroughly understood, a short reference to what are termed the trigonometrical ratios will now be made.

Trigonometrical Ratios.-These trigonometrical ratios enable us to utilise triangles for the purpose of measurement ; they are known as sines, cosines, tangents, cotangents, secants, and coser nents, and their numerical values have been tabulated for reference in books of tables (see the volume on Algebra and Tric on metr?; in Griffin's Nautical Series).

The trigonometrical ratios are simply the relative values of the sides of a right-angled triangle. Thus, in the triangle A BC, in which the angle $\mathrm{A} C B$ is a right angle,

$$
\frac{A C}{A B}=\operatorname{sine} B \text { and } \frac{B C}{A B}=\operatorname{cosine} B .
$$



Let the sides of the triangle have the following values :$\mathrm{AB}=5, \mathrm{AC}=3$, and $\mathrm{BC}=4$; then sine $\mathrm{B}=\frac{3}{5}=6$ and
cosine $B=\frac{4}{5}=8$. On reference to a table of natural sines and cosines, we find that 6 is the sine of an angle of $36^{\circ} 52^{\prime} 11^{\prime \prime}$, and 8 is the cosine of the same angle.

Again, if we divide AC by BC , we have $\frac{\mathrm{AC}}{\mathrm{BC}}=\frac{3}{4}=\cdot 75$; this is known as the tangent of the angle B ; and $\frac{\mathrm{BC}}{\mathrm{AC}}=\frac{4}{3}=1 \cdot 333$ is the cotangent of the same angle.

Also, $\frac{\mathrm{AB}}{\mathrm{BC}}={ }_{4}^{5}=1.25$ is the secant of angle B;
and $\frac{\mathrm{AB}}{\mathrm{AC}}=\frac{5}{3}=1 \cdot 666$ is the cosecant of the same angle.
We have also the following when the relative values of the sides are those of triangle D E F, p. 3 :-
$\frac{\mathrm{EF}}{\mathrm{DE}}=\frac{5}{1}=\cdot 5$, which is the sine of angle D,
and $\frac{\mathrm{DF}}{\mathrm{DE}}=\frac{866}{1}=\cdot 866$, which is the cosine of the same angle.
Also, $\begin{aligned} & \mathrm{EF} \\ & \mathrm{DF}\end{aligned}=\frac{.500}{.866}={ }^{5} 577$, which is the tangent of angle D,
and $\frac{\mathrm{DF}}{\overline{\mathrm{EF}}}=\frac{.866}{\cdot 500}=1 \cdot 732$, which is the cotangent of the same angle.

$$
\begin{array}{rlrl}
\frac{\text { Sine }}{\text { Cosine }} & =\text { tangent, or in figures } & \frac{5}{\cdot 866} & =577 . \\
\frac{\text { Cosine }}{\text { Sine }} & =\text { cotangent, } & & \\
\frac{1}{866} & =1 \cdot 732 . \\
\frac{1}{\text { Cosine }} & =\text { secant, } & & \\
\frac{1}{5} & =\text { cosecant, } & & \frac{1}{866}
\end{array}=1 \cdot 154 .
$$

Again, by Euclid, I. 47, we have the
and the $\quad$ Cosine $=\sqrt{\left(1-\sin ^{2}\right)}=\left(1-\sin ^{2}\right)^{2}$.
When one of the angles of a triangle, such as B, is greater than $90^{\circ}$, the rule of the sides being proportional to the sines of the angles opposite these angles still holds good. Thus, let
the angle $\mathrm{B}=120^{\circ}$, we deduct this from $180^{\circ}$, and the difference, $60^{\circ}$, is the angle whose sine we look for in the tables.


Should we require for any purposes of calculation the cosine of $B$, we find the angle of $60^{\circ}$ as before, and turn up the value of the corresponding cosine; but, in this case, we must use a negative sign before the value found.

Thus, it will be found that the sine of $60^{\circ}$ is equal to 866 , and that the cosine of $60^{\circ}$ is 5 . When figures are noted in this way it is always understood that they are plus quantities, or have a plus sign (written thus: + ) before them. Negative quantities, on the other hand, must always be indicated by a minus sign (written thus : - ), hence, in the case of this obtuse angled triangle, the cosine of the angle B must be considered a negative quantity, and written thus: - 5 .

This is a case of the use of the supplement of the angle whose value we are dealing with. (See also Article 28.)


If in any plane triangle, as C A B, we know the values of the sides $a, \vec{b}$, and $c$, then we can determine the values of the angles A, C, B. The rule for working this out belongs to Plane Trigonometry; but as it is of importance in finding the corresponding rule in Spherical Trigonometry, it may be generally stated here as

$$
\cos \mathrm{A}=\frac{b^{2}+c^{2}-a^{2}}{2 b c}
$$

and

$$
a^{2}=b^{2}+c^{2}-2 b c \cos \mathbf{A}
$$

Let the above triangle have the angle A a right angle, and, further, let the sides $a, b$, and $c$ be equal to 10,8 , and 6 respectively; then
or,

$$
\begin{aligned}
& \cos \mathbf{A}=\frac{8^{2}+6^{2}-10^{2}}{2 \times 8 \times 6} \\
& \cos \mathbf{A}=\frac{64+36-100}{96}=\frac{0}{96}=0
\end{aligned}
$$

And on reference to a table of natural cosines, we shall find that 0 represents an angle of $90^{\circ}$, which is the value of the right angle at $A$.

To find angle B we have

$$
\begin{aligned}
& \cos \mathrm{B}=\frac{a^{2}+c^{2}-b^{2}}{2 \times a \times c} \\
& \cos \mathrm{~B}=\frac{100+36-64}{2 \times 10 \times 6}=\frac{72}{120}=\cdot 6
\end{aligned}
$$

and this we find to be the cosine of an angle of $53^{\circ} 7^{\prime} 49^{\prime \prime}$.
The following diagram and demonstration will show how the corresponding angles are found in spherical trigonometry :-

In this Fig., let O be the centre of a sphere, EOE a diameter,


EEE a great circle, and C B, AC, and A B, or $a, b$, and $c$ arcs of great circles; then ACB is a spherical triangle.
$\mathrm{OC}, \mathrm{OB}$, and OE are all radii of the sphere.
The rule for finding angle $\mathbf{A}$ is $\cos \mathbf{A}=\frac{\cos a-\cos b \cos c}{\sin b \sin c}$.

To show how this rule is obtained, we have to consider how we can form a plane triangle, and use the rule for such triangles as already given (p. 6).

Let ABE cut EEE at right angles, and let ABE be a quarter of a great circle like A E, then, if the great circle E E E lies in a horizontal plane, the point A will be vertically above $O$, the centre of the sphere.

If we consider the relation of the parts in the above Fig., we will see that the lines $t_{1}$ and $t_{2}$, which are tangents to the arcs $b$ and $c$ (and drawn from the point of intersection at A), are equal to the sines of the arcs $b$ and $c$. We have thus two known sides of a plane triangle. The third side will be equal to the dotted line $x$, and to find $x$ we have to consider the right-angled triangle $x y z ; z$ is the chord of the arc CB. In this triangle $z^{2}=x^{2}+y^{2}\left(\right.$ Euclid, I. 47) ; hence $x^{2}=z^{2}-y^{2}$. Now, since OC and OB are radii of the sphere, they are equal to each other; let their value be represented by 1 ; then we have, by rule just given for plane triangles (see p. 6)-

$$
z^{2}=1^{2}+1^{2}-2 \times 1 \times 1 \cos a .
$$

Again, $y$ will be equal to the difference of the cosines of $b$ and $c$; hence

$$
y^{2}=(\cos c-\cos b)^{2}
$$

Then

$$
x^{2}=2-2 \cos a-(\cos c-\cos b)^{2}
$$

Therefore,
$\cos \mathbf{A}=\frac{\sin ^{2} b+\sin ^{2} c-\left(2-2 \cos a-(\cos c-\cos b)^{2}\right)}{2 \sin b \sin c}$,
or,
$\cos \mathbf{A}=\sin ^{2} b+\sin ^{2} c-2+2 \cos a+\cos ^{2} c-2 \cos c \cos b+\cos ^{2} b ;$ but
$\sin ^{2} b=1-\cos ^{2} b$, and $\sin ^{2} c=1-\cos ^{2} c$.
Therefore, by substitution we have-
$\cos \mathrm{A}=\frac{1-\cos ^{2} b+1-\cos ^{2} c-2+2 \cos \alpha+\cos ^{2} c-2 \cos c \cos b+\cos ^{2} b}{2 \sin b \sin c} ;$
and, grouping and cancelling, we have finally-

$$
\cos A=\frac{\cos a-\cos b \cos c}{\sin b \sin c}
$$

Logarithms.-Logarithms are a series of numbers, by means of which calculations involving the use of large groups of figures are much facilitated.

Thus, if we wish to multiply any two numbers together, we take the logarithms of the numbers and add them together; the result, or sum, is the logarithm of the product of the two numbers.

Logarithms may be said to be numbers in arithmetical progression, whilst the numbers they represent are in geometrical progression.

| Thus the logarithm of | 10 is 1, |  |
| :---: | :---: | ---: |
| $"$, | $"$ | 100 is 2, |
| $"$ | $"$, | 1000 is 3, |
| $"$ | $"$, | 100,000 is 4, |
| $"$ | $"$ | 100,000 is 5, and so on, |

Here, 1, 2, 3, 4, and 5 are the logarithms, and $10,100,1,000$, 10,000 , and 100,000 are the corresponding numbers.

It will be seen from this that these logarithms are simply the powers to which the number 10 is raised-

$$
10^{1}, \quad 10^{2}, \quad 10^{3}, \quad 10^{4}, \quad \text { and } 10^{5},
$$

being the same thing as-

$$
10,100,1,000,10,000, \text { and } 100,000 .
$$

Now, if we multiply two numbers, such as $100 \times 1,000$, together, we have 100,000 as the product ; and if we add 2 and 3 (which are the logarithms of $100 \times 1,000$ ) we have 5 (which is the logarithm of 100,000 ).

The logarithms of numbers lying between 10 and 100, 100 and 1,000 , and so on (such as 96 and 154) are expressed thus :-

$$
\begin{aligned}
& \log 96=1 \cdot 982271 \\
& \log 154=2 \cdot 187521
\end{aligned}
$$

Here it will be seen that, as 96 lies between 10 and 100 , its $\log$ must be more than 1 and less than 2, and as 154 lies between 100 and 1,000 , its $\log$ must be more than 2 and less than 3 ; the decimal part following the $1,2,3$, as the case may be, is, therefore, an important factor, and is to be found in tables compiled for logarithmic calculation.

We can always tell what the whole part or index of the logarithm is by considering how many multiples of 10 the number itself consists of ; thus it will be noticed in the foregoing example, that the index is always one less than the number of figures in the number itself, so that for the number 100 we have 2 and for 1,0003 , and for 1542 , as the index parts of the logs of these numbers.

In the case of 154 , however, we must add the decimal part to give the complete logarithm of that number.

## LATITUDE AND LONGITUDE : HOW TO FIND THEM.

1. Latitude.-Latitude is the angular distance of a place on the earth's surface, north or south of the equator ; or it may be defined as the altitude of the celestial pole at that place.


Figs. 1 and 2.
2. Longitude.-Longitude is the angular distance of a place on the earth's surface, east or west of a fixed meridian. It is
generally measured by the arc of the equator intercepted between the meridian passing through the place of observation and the fixed meridian.

Thus in Figs. 1 and 2 A BC represents the equator, which is a great circle of the earth midway between the poles P P.

Parallels of latitude are circles lying between the equator and the poles; these circles are parallel to the equator. XOR is such a circle.
3. Meridians.-Meridians are great circles passing through the poles, and cutting the equator at right angles. Thus, in Fig. 1, P A P C is such a meridian.

Since latitudes are measured from the equator, and longitudes from some specified meridian, then the latitude of any place, such as $\mathbf{X}$, will be the arc $\mathbf{A X}$, and if PBP be this fixed meridian, the longitude will be the arc $O X$ or $A B$ when referred to the equatorial circle.
4. Divisions of a Circle.-For the purposes of trigonometrical measurement, any circle is supposed to be divided into 360 equal parts called degrees, written thus, $360^{\circ}$; each degree into 60 equal parts called minutes, written thus, $60^{\prime}$; and each minute into 60 equal parts called seconds, written thus, $60^{\prime \prime}$.

Any part of a circle may, therefore, be expressed as containing so many degrees, minutes, and seconds. Thus, the whole circle A PCP contains $360^{\circ}$, one-half part (as APC) contains $180^{\circ}$, and one-quarter part (as A P) contains $90^{\circ}$. Also any intermediate part, as A X, may contain, say, $60^{\circ}$; or, if between $60^{\circ}$ and $61^{\circ}$, it might be $60^{\circ} 21^{\prime} 50^{\prime \prime}$, or any other subdivision corresponding to the position of the point $\mathbf{X}$.

Again, the angle ABP or ABX is measured by the number of degrees in the arcs AP or AX; hence the angle A BX will be equal to $60^{\circ}$ or $60^{\circ} 21^{\prime} 50^{\prime \prime}$-or other value depending upon the position of the point $X$.
5. Latitudes and longitudes are measured in this way-viz., by degrees, minutes, and seconds ; hence the position of the place $\mathbf{X}$ (Figs. 1 and 2) is known as in latitude so many degrees north or south of the equator, and as in longitude so many degrees east or west of the fixed meridian.

Thus the place represented by the point $X$, as drawn in the Figs., would be, say, in latitude $70^{\circ} 25^{\prime}$ north, and in longitude $90^{\circ}$ west.

In Britain the meridian passing through the Observatory at Greenwich is considered the fixed meridian, and is, therefore, numbered 0 .

Longitudes are, therefore, known in this country as so many degrees east or west of Greenwich, and will be so considered in any after reference to them.
6. Fixing Position by Co-ordinates.-The fixing of the position of any place on the earth's surface is, therefore, not unlike the determining the position of a point on a plane surface by means of two lines at right angles to each other.

Thus the position of the point P may be determined by the distances at which it lies from the axes OX and OY (see Fig. 3), and if the point $P$ be supposed to


Fig. 3. move, we may follow its movements by such measurements, taken at different parts of its course, and thus obtain a line representing its path.

Thus in Fig. 4, if we suppose the point P to move in such a manner that the co-ordinates or straight lines $x$ and $y$ drawn at right angles from the axes OY and OX fix its different positions, as at $\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$, \&c., then the lines drawn through $\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$, will show approximately its path


Fig. 4.
T1 like manner we may find the path traversed by such a moving body as a ship at sea if we know the latitudes and longitudes of different points in her path ; in this case, however, the path is over a curved surface, and the positions are determined by angular measurement.
7. In land surveying we have certain definite points and lines which we can see and reckon from, whereby measurements can readily be made and positions determined.

In like manner the position of a vessel sufficiently near the coast can be determined by observations made on well-known objects ashore.

Thus, if, in Fig. $5, \mathrm{~S}_{1}$ and $\mathrm{S}_{2}$ be two different positions of a ship sailing on the course represented by the straight line, C O ; then, if the bearing of some conspicuous object, $P$, on shore be determined from the position $\mathrm{S}_{1}$, and again from the position $\mathrm{S}_{2}$,
the distauce run or made good between these two positions having been noted, the observer on deck can, from these elements, obtain his distance from the object on the shore.


Fig. 5.
Thus, let the angle made by the lines $\mathrm{PS}_{1}$ and CO be $60^{\circ}$, and, again, let the distance run be such that the angle made by the lines $\mathrm{PS}_{2}$ and CO be also $60^{\circ}$, as shown in Fig. 5 ; then we know from mathematical principles that the triangle is an equilateral one, hence the distance to the object on shore from either of these two positions of the ship must be equal to the distance from $\mathrm{S}_{1}$ to $\mathrm{S}_{2}$.

In the same way we might have such a triangle as is shown by Fig. $5 a$, where, if the bearing of the point P with the vessel's.


Fig. $5 a$.
course, CO O, from the position $\mathrm{S}_{1}$ gives an angle of $45^{\circ}$, and, again, the second bearing from $\mathrm{S}_{2}$ gives an angle of $90^{\circ}$, the distance, $\mathrm{P}_{2}$, is the same as that from $\mathrm{S}_{1}$ to $\mathrm{S}_{2}$. This is called a four-point bearing, from the angle $90^{\circ}$ containing four points of the compass, or $11 \frac{1}{4}^{\circ} \times 4=45^{\circ}$.
8. In the open sea, however, there are no such fixed objects, hence from very early times the sun, moon, and stars were made use of to help the mariner to determine his position.

Now, provided we know how these bodies are situated relatively to the earth, we may with more or less accuracy, depending on that knowledge and our instruments for observing, obtain some idea of our position.

Thus the pole star remains practically, to our eyes, fixed in the northern sky, and as we travel north or south it appears to rise or fall in the heavens.

In Fig. 6, let $P_{1} P_{2}$ be two different positions of an observer,


Fig. 6.
who stands in the line $\mathrm{P}_{1} \mathrm{O}$ and $\mathrm{P}_{2} \mathrm{O}, \mathrm{O}$ being the earth's centre, then the angle at which the pole star will appear to his eye as above the horizon at $P_{1}$, will be that shown by the angle $a$, and when he is at $\mathrm{P}_{2}$ by the angle $b$, the extreme positions being at $\mathrm{P}_{0}$ and $\mathrm{P}_{3}$.

At $P_{3}$ the star will appear on the horizon.* The several lines drawn parallel to $\mathrm{S}_{\mathrm{P}_{0}} \mathrm{O}$ represent the constant direction of the pole star as related to the earth, its distance being so great that at any two points on the earth's surface from which it may be viewed the directions are parallel.

* The horizon here referred to is that known as the sensible horizon, or the direction in which a level line points at the place of observation. The visible horizon is the line which marks where the sea and sky appear to touch (see also Article 20).

As this is an important matter when dealing with such distant bodies as the stars and sun, it may be well to point out more tully these relations.
9. Parallax.-If on a flat plane a pole be placed as at B (see Fig. 7), and then viewed from any point such as A, it will appear projected in the direction $\mathrm{B}_{1}$; again, if viewed from the point $C$ it will appear projected in the direction $B_{2}$.

This apparent shift in its position on the background $B_{1} B_{2}$ is called parallax, and is measured by the angle A B C.


Fig. 7.


Fig. 8.

If the proportions of the triangle A B C be altered as in Fig. 8, the amount of apparent shift $B_{1} B_{2}$ is less than before, hence if the object $B$ be very remote, and the base $A C$ of the triangle A BC very small, the angle ABC (the parallax) will become minute, and hence any object at such an inconceivable distance as the fixed stars ceases when viewed from any two points of the earth's surface to have any appreciable parallax, and consequently the lines of sight may be said to become parallel.
10. Referring again to Fig. 6, a little consideration will show that the angle $\alpha$ is equal to the angle $\mathrm{P}_{1} \mathrm{O}_{3}$, and the angle $b$ to the angle $\mathrm{P}_{2} \mathrm{OP}_{3}$, but the angle $\mathrm{P}_{1} \mathrm{OP}_{3}$ is the latitude of the position $P_{1}$, and the angle $\mathrm{P}_{2} \mathrm{O}_{3}$ is the latitude of the position $\mathrm{P}_{2}$, hence when by observation we obtain the angles $a$ and $b$, we know that we are obtaining the latitudes of these positions.
11. Such observations can only be made at night, but during
the day we have the sun, by observing whose position at certain times we can in like manner determine our latitude.

During the sun's apparent daily circuit from east to west, he rises, attains a maximum elevation, and then declines to the setting. At the maximum elevation he is in the line of a meridian passing through the point of observation, and consequently suitably placed for the observer of his altitude to determine the latitude.

The time at which the sun is in this position is known as noon.
Thus in Fig. 9 a person standing at $P_{3}$ will have the sun vertically above him; at the same time an observer at $P_{9}$ will


Fig. 9.
see the sun in the direction $\mathrm{P}_{2} \mathrm{~S}_{2}$, and an observer at $\mathrm{P}_{1}$ in the direction $\mathrm{P}_{1} \mathrm{~S}_{1}$.

The observer at $P_{3}$ stands in the line $P_{3} O$, and has the sun directly above him.

The observer at $P_{2}$ stands in the line $P_{2} O$, and has the position of the sun depressed by the angle $b$, and the observer at $P_{1}$ sees the sun still lower down, the depression from the verticai being equal to the angle $a$, but the angle $b^{*}$ is equal to the angle $\mathrm{P}_{2} \mathrm{OP}_{3}$, and the angle $a$ is equal to the angle $\mathrm{P}_{1} \mathrm{OP}_{3}$; therefore, as in Fig. 6, the angle $a$ is the latitude of the position $P_{1}$, and the angle $b$ is the latitude of the position $P_{2}$.

If, then, by means of any instrument we can measure the

[^0]angles $a$ and $b$, we can determine the latitude of the place of observation.

Draw the line $\mathrm{P}_{2} \mathrm{H}_{2}$ at right angles to the line $\mathrm{P}_{2} \mathrm{O}$, and the line $\mathrm{P}_{1} \mathrm{H}_{1}$ at right angles to the line $\mathrm{P}_{1} \mathrm{O}$, then $\mathrm{H}_{2}$ will represent the direction of the sensible horizon from $\mathrm{P}_{2}$, and $\mathrm{H}_{1}$ the direction of the sensible horizon from $\mathrm{P}_{1}$, and, consequently, the angles $c$ and $d$ will be the angles of elevation or altitude of the sun at the places $P_{2}$ and $P_{1}$.

Since the angle $H_{2} P_{2} Z$ is a right angle, and in degrees is onequarter of a circle, it is equal to $90^{\circ}$; hence, if we subtract the altitude from this we get the latitude, or

$$
90^{\circ}-\text { alt. }=\text { lat. }
$$

12. The above would be quite sufficient for the determination of the latitude, provided the sun were always moving in the plane of the equator ; but as this is not the case, some further matters must be attended to.
13. The earth, in its annual circuit round the sun, is so placed that the axis of the daily rotation is inclined from a vertical to the plane of its orbit by an angle of $23^{\circ} 28^{\prime} 40^{\prime \prime}$.

Thus in Fig. 10 two positions of the earth are shown at the extremities of its orbit. P P are the poles, and EQ the equator.


Fig. 10.
The line OST represents the plane of the orbit, or path in which the earth moves round the sun.* S is the position of the sun.

From the above diagram it will be seen that the sun is vertical at the points $V \mathrm{~V}$, and these, in the positions of the earth as shown in the diagram, are removed from the equator by an angular distance equal to abont $23 \frac{1}{2}^{\circ}$.

[^1]In other positions of the orbit the points $V$ and $V$ are nearer to the equator; at the period of the equinoxes these points are on the equator, and the conditions become the same as shown at S in Fig. 10.
14. Declination.-This apparent movement of the sun is called Declination, and must be allowed for when finding the latitude, by ascertaining its quantity from tables for the purpose.

This will be more readily understood by a consideration of Fig. 11, which shows the sun vertical at V, a position lying


Fig. 11.
between the equator and the pole $P$. Hence an observer standing as before (see Fig. 9) at $\mathrm{P}_{3}$, instead of having the sun vertically above him, will see it depressed by an angle equal to $b$, and an observer at $\mathrm{P}_{2}$ will find that the amount of depression, as found in "Fig. 9, has also increased. These additions to the former angles will be each equal to the angle $P_{3} \mathrm{OV}$, or number of degrees that the sun is beyond the equator; hence, under the conditions shown by the Fig., to get the latitude we must subtract the declination from the angle $b$ if observing from $\mathrm{P}_{3}$, and from angle $a$ if observing from $\mathrm{P}_{2}$.

It will be noticed that the angle $b$ is equal to the angle $\mathrm{P}_{3} \mathrm{OV}$, and the angle $a$ to the angle $\mathrm{P}_{2} \mathrm{OV}$, hence when we deduct the angle $\mathrm{P}_{3} \mathrm{OV}$ or declination from either of these we must get the latitude.

These conditions may be more clearly expressed by the
following equations:-When the sun is over the equator, as in Fig. 9,

$$
\begin{equation*}
90^{\circ} \text { - alt. }=\text { lat. ; } \tag{1}
\end{equation*}
$$

when the sun is beyond the equator, as in Fig. 11,

$$
90^{\circ}-\text { alt. }- \text { declination }=\text { lat. } ;
$$

and when the sun is between the observer and the equator,

$$
\begin{equation*}
90^{\circ}-\text { alt. }+ \text { declination }=\text { lat. } \tag{3}
\end{equation*}
$$

Example 1.-The observed altitude of the sun at noon on the 25 th December at a place in north lat. was $10^{\circ} 45^{\prime}$. What is the latitude? Sun's declination for that date is $23^{\circ} 24^{\prime}$ south; then by rule (2) $90^{\circ}$ - alt. - dec. = lat. ; hence $90^{\circ}-10^{\circ} 45^{\prime}-$ $23^{\circ} 24^{\prime}=55^{\circ} 51^{\prime}$ N. lat.

Example 2.-The observed altitude of the sun at noon on the 9 th May at a place in north lat. was $51^{\circ} 5^{\prime}$. What is the latitude? Sun's declination for that date is $17^{\circ} 30^{\prime}$ north ; then by rule (3) $90^{\circ}$ - alt. + dec. = lat. ; hence $90^{\circ}-51^{\circ} 5^{\prime}+17^{\circ} 30^{\prime}=$ $56^{\circ} 25^{\prime} \mathrm{N}$. lat.
15. Refraction.-Refraction causes bodies when near the horizon to appear more elevated than they are in reality; this effect decreases with the elevation of the body above the horizon. At the zenith there is no refraction.

Thus the effect of refraction is so great that the sun, when seen upon the horizon, has really sunk beneath it ; the effect of refraction being to apparently elevate the sun's disc through a space equal to its diameter, or about half a degree.
16. Longitude.-Longitude is the angular distance (as already defined, Article 2, p. 10) of any point east or west of a fixed meridian, such as that passing through Greenwich Observatory.

The sun, as he makes his apparent daily circuit in 24 hours, moves through $360^{\circ}$; hence, in one hour, he moves through

$$
\frac{360^{\circ}}{24}=15^{\circ} .
$$

When the sun is on the meridian of any place it is noon there, hence the time at any place $15^{\circ}$ east of that meridian will be one hour past noon, and of any place $15^{\circ}$ west of that meridian one hour before noon; from this it will be seen that if we know the difference of the time between any place on the meridian, and any place east or west of that meridian, we have a means of determining the longitude.

Thus, if an observer at a place situated, say, $15^{\circ}$ to the west
of Greenwich, has a clock or watch showing Greenwich time, he will find tnat when it is noon with him his watch will show one o'clock; in other words, the watch, when the sun is on the meridian of Greenwich, showed noon, and now, in correspondence with the sun's movement through $15^{\circ}$ of arc, it shows a movement of one hour of time measurement, or 1 p.m.

To find his longitude, therefore, the observer watches the sun until he is on the meridian of the place of observation, and at the same instant notes the time at Greenwich by his watch; the difference of time converted into degrees will be the longitude.

Thus, if the difference be one hour, the longitude will be $15^{\circ}$ east or west, as the case may be.

The sun is always due south at noon to an observer in our northern latitudes.
17. The number of degrees corresponding to any interval of time can be found by a simple proportional statement thus :24 hours is to the difference of time as $360^{\circ}$ is to the longitude, or

$$
\begin{gathered}
24: \mathrm{D}:: 360: \mathrm{L}^{\circ} \\
\frac{360 \times \mathrm{D}}{24}=\mathrm{L}, \text { or } 15 \mathrm{D}=\mathrm{L}
\end{gathered}
$$

Or,
where $D$ is the difference of time in hours, and $L$ is the longitude in degrees.

From the above we have also

$$
\mathrm{D}=\frac{\mathrm{L}}{15}
$$

Since $15^{\circ}$ are passed over in 1 hour or 60 minutes, it is evident that $1^{\circ}$ is passed over in 4 minutes, and this will be found useful for converting degrees into time.

Thus, if the difference of longitude between two places is $34^{\circ}$, the difference of time will be

$$
\frac{34 \times 4}{60}=\frac{136}{60}=2 \mathrm{~h} .16 \mathrm{~m} .
$$

Again, if we have an angle of, say, $34^{\circ} 50^{\prime}$, then the value in time measure will be

$$
\frac{34^{\circ} 50_{4 / 60}^{\prime}}{2 \mathrm{~h} .19 \mathrm{~m} .20 \mathrm{sec}}
$$

18. In the foregoing description of the mode of determining the longitude, it will be seen that one of the important points is to note when the sun is on the observer's meridian.

On shore this can readily be done if we have a telescopic instrument placed exactly in the line of the meridian of the
place, so that the instrument can point north and south, then the instant that the sun crosses the line of sight can be exactly noted; this will be noon at the place of observation.

At sea, however, this cannot be done, as there are no fixed points to depend upon, and, therefore, other methods and instruments must be used in the observations required.
19. Finding the Latitude. - On shore this can be done by means of a transit instrument as so far described, the sun's altitude being measured when the transit of the line of sight takes place.

At sea the instrument used is known as a quadrant or sextant.

Fig. 12 shows a sextant, so called because the arc A B is the


Fig. 12.
sixth part of a circle This arc is graduated into degrees, and can be subdivided into minutes and seconds.

MI is an arm moving round an axis at $\mathbf{M}$, and carrying a mirror at $\mathbf{M}$. $H$ is a glass placed parallel to the side M B ; one part is silvered so as to act as a mirror, the other part is clear. When a ray of light from, say a star, or the sun, talls upon the mirror at M, it is reflected to H, and again to E. The observer at $\mathbf{E}$ will then see the reflected image in the line EH . When that happens, the angle between the star and an object
in the line EH will be equal to the angle MEH ; but as this angle is double of the angle BMI, the arc BI is graduated so as to give the exact measure of the angle MEH. In observing, the arm M I must be moved until the correspondence of reflected image and distant object takes place, the angle, as measured on the arc I B, will then give the angle between the two objects.


Fig. 13.
Fig. 13 shows the instrument as used when the objects are not so far apart as in Fig 12.

These instruments are carefully tested, and any permanent error found is noted and known as the index error, and must be allowed for when taking angular measurements.

Being provided with such an instrument, an observation for latitude can readily be made at sea, as we are no longer dependent upon an instrument only suited for fixed positions.

As noon approaches observations are made of the sun's altitude, and when his highest position is ascertained it is then noon at the place of observation. The angle of elevation of the sun above the horizon is noted, and as explained in Articles 10 to 14 the latitude is then determined.

The horizon here referred to is sometimes called the apparent horizon.

The apparent horizon is lower that the sensible horizon, as the eye is always situated at some height above the earth's surface.

This depression is called the Dip.
20. These definitions may be illustrated by Fig. 14.

Let the arc A B represent part of the sea's surface, H B a line
drawn touching that surtace at B (i.e., H B is a tangent to the arc at B), C E a line parallel to H B.

Let this line C E be the direction of a level line, as seen by an observer standing vertically above B.

Let $\mathrm{H}_{1} \mathrm{~A} \mathrm{E}$ be a line supposed to be drawn from the eye of the observer at E to a point A , where it touches the earth's surface-i.e., $\mathrm{H}_{1} \mathrm{~A} \mathrm{E}$ is a tangent to the arc A B at A .


Fig. 14.
Then the angle SEC is the altitude of the object S above the level line E C , and the angle $\mathbf{S E} \mathrm{H}_{1}$ is the altitude of the object S above the line $\mathrm{H}_{1} \mathrm{~A} \mathrm{E}$; the difference of these angles is the measure of the angle CEH , and this is known as the dip.

If, then, by means of a sextant, the observer brings down the image of the object $S$ until it appears to coincide with the point A, he will find that the angle of altitude above A (or the apparent horizon) is $\mathrm{SE} \mathrm{H}_{1}$; from this he must subtract the angle CE H or dip to obtain the true altitude S E C.

Example 3.-Observed altitude of a star is $32^{\circ} 15^{\prime} \quad 0^{\prime \prime}$ Height of eye, 10 feet. The depression or dip corresponding to this height is . . . . $0 \quad 0 \quad 3^{\prime} \quad 3^{\prime \prime}$

True altitude,*
$32^{\circ}$
$11^{\prime} 57^{\prime \prime}$
21. Where the observation is made on such bodies as the sun

[^2]and moon, which have a visible magnitude, it is usual to measure the altitude of the upper or lower edge of the body, and subtract or add the apparent semi-diameters of the body, expressed in angular measure, so as to get the altitude of the centre of the body.

Example 4.-Observed altitude of the sun's loweredge, $60^{\circ} \quad 0^{\prime}$ Add semi-diameter or . . . . . . . 0 16

Altitude of centre,
$60^{\circ} 16^{\prime}$
If altitude of upper edge be taken, then we have alt. $=60^{\circ} 32^{\prime}$
Deduct semi-diameter, $=$. . . . . . $16^{\prime}$
And we have, as before, altitude of centre, $=$. $60^{\circ} 16^{\prime}$


Fig. $14 a$.
Let HHH (Fig. 14b) represent the boundary circle of sea and sky or horizon, and let the observer, situated at the centre of this circle, wish to ascertain the altitude of the celestial pole $P$ above his horizon line, this could be at once found if there was a visible point in the heavens, such as P , noting the celestial pole.

The nearest well-known star is Polaris, situated at about $1^{\circ} 16^{\prime}$ from the celestial pole. This star, however, in common with all the other stars, has an apparent motion round the celestial pole, and in a small circle whose diameter is about $2^{\circ} 32^{\prime}$.

It will be obvious, therefore, that an altitude of this star,
such as $\mathrm{HS}_{2}$ or $\mathrm{H}_{1}$, will be either too small or too large, and so for most of the other positions.

Hence, tables of the necessary corrections of the observed altitudes have been drawn up, whereby the altitude of the celestial pole may be determined, and from this the latitude.

As this star is only about $1 \frac{1}{4}^{\circ}$ from the true pole, the greatest error in latitude, as determined from an altitude of this star, cannot be more than $1 \frac{1}{4}^{\circ}$, due to the two extreme positions of the star when passing the meridian during the course of its small daily circuit round the true pole.

At other times the error will be less, and at the two positions at right angles to the meridian the error will be reduced to nothing.

Artificial Horizon.-An artificial horizon is sometimes used on shore when the natural horizon cannot be seen.

It consists mainly of a reflecting surface of some fluid, preferably mercury, in which the image of the sun can be seen, and at the same time the image of the sun, as seen in the sextant, is brought into contact. Thus, if $\mathrm{S}_{2}$ be the image of the sun, as seen on the reflecting surface, then the image of the sun $S_{1}$, as seen in the sextant, is brought down until the two images touch ; the angle read off is double of the required angle, its half will, therefore, be the altitude of $\mathrm{L}_{1} ; \mathrm{L}_{1}$ is the lower limb of the image in the sextant, $L_{2}$ is the lower limb of the image in the artificial horizon. To get the altitude of the centre the semi-diameter has to be added.
22. Finding the Longitude. -The method of


Fig. 14c. finding the latitude having been described, and shown to depend upon an observation of the altitude of the sun at noon, the finding of the longitude may be also shown to depend upon an observation of the altitude of the sun, but such observation is taken preferably at some time of the morning or afternoon, when the sun is not so high in the sky.

Thus, supposing an observation of the sun's altitude to be taken at about 8 a.m. or 4 p.m., from such an observation, by the help of a simple rule in spherical trigonometry, the angular
distance of the sun from his position at noon can be calculated.
28. Before explaining this method it may be well to consider the relation of the sun's apparent daily movement round the earth, and any point on the earth's surface where the observer may be placed.

Let P, in Fig. 15, represent the north pole of the earth, and let $\mathbf{S} \mathbf{S}_{1} \mathbf{S}_{2} \mathbf{S}_{3}$ represent different positions of the sun in his apparent daily circuit from east to west.


Fig. 15.
Let $S$ be the position of the sun at noon at any place, $L$, and $\mathrm{S}_{1}$ his position later on in the day, on a meridian passing through some other point, $L_{1}$, on the earth's surface, then the arc $L L_{1}$ will represent the angular distance travelled, and the time taken to this movement will be in the proportion of the length of the are $\mathrm{L} \mathrm{L}_{1}$ to the whole circumference.

Thus, if $\mathrm{L} \mathrm{L}_{1}$ be $30^{\circ}$, then as the whole daily movement through $360^{\circ}$ is done in 24 hours, we have-

$$
360^{\circ}: 30^{\circ}:: 24 \mathrm{~h} .: 2 \mathrm{~h} .
$$

Or, as formerly explained, the movement is at the rate of $15^{\circ}$ per hour.

When the sun has got to $S_{2}$ the arc on the earth's surface has increased to $\mathrm{L} \mathrm{L}_{2}$, and so on, hence the angles $\mathrm{L} \mathrm{P}_{1}$ and $\mathrm{L} \mathrm{P}_{2}$ are known as Hour Angles, because, knowing the number of degrees contained in them, we can readily determine the time
in hours or parts of an hour which has elapsed since the sun left the position of noon at L .

Example 5.-Let L P L 1 be any angle, say, $20^{\circ} 4^{\prime} 15^{\prime \prime}$. What is the corresponding local time at the place L? Now, by Article 17, we have-

$$
\frac{20^{\circ} 4^{\prime} 15_{4 / 60}}{1 \mathrm{~h} .20 \mathrm{~min} .17 \mathrm{sec} .}
$$

In this case $20^{\circ} 4^{\prime} 15^{\prime \prime}$ is the hour angle, and 1 h .20 min .17 sec. is the corresponding time which has elapsed during his motion from S to $\mathrm{S}_{1}$, all as measured by an observer at L .
24. Finding the Hour Angle.-Now let us consider these relations when applied to a spherical triangle forming part of the earth's surface.

Let $P$ (Figs. 16, 17) be one of the poles of the earth, and $S$ and L any two points on the surface, then if $\mathrm{D} T$ is the equatorial


Fig. 16.
line, $\mathrm{L} T$ will be the latitude of the place L , and PL is the colatitude.

Let $S$ be a point directly below the sun at a given instant (i.e., the sun is vertically overhead at $S$ ), then PS is the sun's Polar distance, D S his declination, and S L is the angular distance between the points S and L , also the angle $a$ is the hour angle.

PSL is a spherical triangle whose sides are arcs of great circles.*
Now, to find the values of the sides of such a spherical triangle, let an observer stationed at L take the altitude of the sun, then

[^3]the altitude subtracted from $90^{\circ}$ will be the measure of the arc S L (sometimes called the zenith distance; the zenith being the point of the heavens directly above the observer).


Fig. 17.
The arc PS or polar distance can always be found by referring to tables showing the declination, D S , of the sun during the year, and the arc $P \mathrm{~L}$ is found by subtracting the latitude of the place of observation from $90^{\circ}$, or $\mathrm{PL}=90^{\circ}$ - lat.

Now, from the principles of spherical trigonometry (see Introductory Chapter, p. 7), it can be shown that-

$$
\operatorname{Cos} \alpha=\frac{\operatorname{Cos} \mathrm{S} \mathrm{~L}-\cos \mathrm{PL} \times \cos \mathrm{PS}}{\operatorname{Sin} \mathrm{PL} \times \sin \mathrm{PS}}
$$

The angle $a$ is the hour angle, and is measured by the arc contained between taugents of the arcs $\mathrm{S} P$ and L P , drawn from the point $P$ where they meet.

Thus, if $\mathrm{P} s$ and $\mathrm{P} l$ be tangents to the arcs PS and P L , drawn from the common point P , then the angle $s \mathrm{P} l$ is the angle $a$.

From the foregoing we may write for value of cosine of hour angle-

$$
\operatorname{Cos} \text { H A }=\frac{\text { Cos co-alt }-\cos \operatorname{co-lat} \times \cos \text { polar dist. }}{\operatorname{Sin} \text { co-lat } \times \sin \text { polar dist. }}
$$

or more conveniently-

$$
\operatorname{Cos} \text { H A }=\frac{\text { Sin alt }-\sin \text { lat } \times \cos \text { polar dist. }}{\text { Cos lat } \times \sin \text { polar dist. }}
$$

The change to the latter form is obtained from the rule in trigonometry that the sine of any angle is equal to the cosine of its complement ; the complement being the difference between the angle and $90^{\circ}$.

Thus, if in the above the co-alt. or $\mathrm{S} L$ be $73^{\circ}$, the co-lat. or PL be $40^{\circ}$, and the polar distance or PS be $70^{\circ}$, then the equation becomes :-

$$
\operatorname{Cos} \mathrm{HA}=\frac{\operatorname{Sin} 17^{\circ}-\sin 50^{\circ} \times \cos 70^{\circ}}{\operatorname{Cos} 50^{\circ} \times \sin 70^{\circ}}
$$

because $90-73=17$, and $90-40=50$.
In the right-angled triangle $\mathrm{ABC}, \frac{\mathrm{AB}}{\mathrm{AC}}=$


Fig. 18. sine of angle $A C B$, and $\frac{B C}{A C}=$ cosine of $A C B$, also $\frac{A B}{A C}=$ cosine of angle B A C, and $\frac{\mathrm{BC}}{\mathrm{AC}}=$ sine of angle B A C. From this we see that sine $\mathrm{ACB}=\operatorname{cosine} \mathrm{BAC}$, and cosine $\mathrm{ACB}=$ sine BAC, and BAC and ACB are complementary angles, for together they are equal to a right angle or $90^{\circ}$.

It will be seen from the above that the sine and cosine of any angle are simply the ratios existing between the sides and the hypothenuse of a right-angled triangle ; thus, if AC be $=1$, and if AB be $=\cdot 866$, and $\mathrm{BC}=5$, then the ratios of $\cdot 866$ to 1 or $\frac{\cdot 866}{1}$ is the sine of the angle ACB , and the ratio of $\cdot 5$ to 1 or $\frac{5}{1}$ is the cosine of the same angle (see also Introductory Chapter).

Example 6.-Let the sun's alt. be $17^{\circ}$, the lat. $50^{\circ}$, and the polar distance $70^{\circ}$. What is the hour angle?

$$
\operatorname{Cos} \mathrm{HA}=\frac{\sin 17^{\circ}-\sin 50^{\circ} \times \cos 70^{\circ}}{\operatorname{Cos} 50^{\circ} \times \sin 70^{\circ}} .
$$

Referring to any table of natural sines and cosines, and substituting the corresponding values in above equation, we have-

$$
\operatorname{Cos} \mathrm{HA}=\frac{\cdot 292 \cdot 766 \times \cdot 342}{.643 \times \cdot 939}=\cdot 05035
$$

On referring again to the tables we find that 05035 is the cosine of $87^{\circ} 7^{\prime}$, which is, therefore, the hour angle. The time representing this angle will be found by multiplying by 4 and dividing by 60 , thus-

$$
\frac{87^{\circ} \bar{i}_{460}}{5 \mathrm{~h} .48 \mathrm{~min} .28 \text { secs. }}
$$

and this represents the time taken by the sun to pass through the space denoted by the angle a, in Figs. 16 and 17, and which has the value in the above example of $87^{\circ} 7^{\prime}$.

25 . It will be seen from the foregoing that the numerical work to be gone through in calculating the hour angle is simple, involving only subtraction, multiplication, and division.

If the values of the sines and cosines are taken to more than three places of decimals for greater accuracy in the result, then the work becomes more extended; hence, where great accuracy is wanted, it is usual to work this question by means of the logarithmic sines, cosines, \&c., and the rule for finding the hour angle is expressed differently. One of the forms it assumes is this-

Let the example be as before, then

| Alt. | $=17^{\circ}$ | Cosecant $=10.0270142$ |  |
| :---: | :---: | :---: | :---: |
| Polar D. | $=70^{\circ}$ |  |  |
| Lat. | $=50^{\circ}$ | Secant | $=10 \cdot 1919325$ |
| Sum | $=137^{\circ}$ |  |  |
| Half sum | $=68^{\circ} 30^{\prime}$ | Cosine | $=9.5640754$ |
| Deduct Alt. | $=17^{\circ} 0^{\prime}$ |  |  |
| Difference | $=51^{\circ} 30^{\prime}$ | Sine | $=9 \cdot 8935444$ |
|  |  | Deduct | $\begin{aligned} & 39 \cdot 676 \check{6} 65 \\ & 20 \end{aligned}$ |
|  |  |  | 2) $1 \overline{9} \cdot 6765665$ |
| Logarithmic | sine of half t | our angl | $=9.8382832$ |

On referring to a table of logarithmic sines, \&c., we find that this angle is $43^{\circ} 33^{\prime} 32 \cdot 5^{\prime \prime}$, and doubling this we have $87^{\circ} 7^{\prime} 5^{\prime \prime}$ as the hour-angle, the time corresponding to which is, 5 h .48 min . and 28 secs.

Example 7.-On 10th May, 1895, in a place in lat. $55^{\circ} 52^{\prime}$, observed alt. of sun's lower limb at $3.51 \frac{1}{2}$ p.m. by watch was $34^{\circ} 45^{\prime}$, and his polar distance at that time was $72^{\circ} 19^{\prime} 55^{\prime \prime}$, then-

| $34^{\circ}$ | $45^{\prime}$ | $0^{\prime \prime}$ |  |
| ---: | ---: | ---: | :--- |
| $0^{\circ}$ | $15^{\prime}$ | $52^{\prime \prime}$ | semi-diameter. |
| $35^{\circ}$ | $0^{\prime}$ | $52^{\prime \prime}$ |  |
| $0^{\circ}$ | $1^{\prime}$ | $21^{\prime \prime}$ | refraction. |
| $34^{\circ}$ | $59^{\prime}$ | $31^{\prime \prime}$ | true alt. of centre |

Then by rule we have-

| Alt. $=34^{\circ} 59^{\prime} 31^{\prime \prime}$ |  |  |
| :---: | :---: | :---: |
| P.D. $=72^{\circ} 19^{\prime} 55^{\prime \prime}$ | Cosec $=$ | $=10 \cdot 021021$ |
| Lat. $=55^{\circ} 52^{\prime} 0^{\prime \prime}$ | Sec | $10 \cdot 250943$ |
| 2) $163^{\circ} 11^{\prime} 26^{\prime \prime}$ |  |  |
| $81^{\circ} 35^{\prime} 43^{\prime \prime}$ | Cos | $9 \cdot 159054$ |
| Deduct Alt. $34^{\circ} 59^{\prime} 31^{\prime \prime}$ |  |  |
| $46^{\circ} 36^{\prime} 12^{\prime \prime}$ | Sin | $9 \cdot 861520$ |
|  |  | 39•292538 |
|  | Deduct | t 20 |
|  |  | 2) $19 \cdot 292538$ |
| Log. sin of $\frac{1}{2}$ hour angle |  | $=9 \cdot 646269$ |
| Hence $\frac{1}{2}$ hour angle is | . | $26^{\circ} 17^{\prime} 1^{\prime \prime}$ |
| And hour angle | . | $=\frac{2}{52^{\circ} 34^{\prime} 2^{\prime \prime}}$ |
|  |  | 4 |
|  |  | $60) \longdiv { 2 1 0 ^ { \circ } 1 6 ^ { \prime } 8 ^ { \prime \prime } }$ |
| Apparent time | - | 3 h .30 min .16 sec. |
| Equation of time, subtra | ct, | $\begin{array}{ll}0 & 3\end{array}$ |
| Mean time at place | . | 3 h .26 min .30 sec . |

26. These rules may be stated thus-
(a) When using the natural sines and cosines. From the sine of the altitude subtract the product of the sine latitude and cosine polar distance, and divide the result by the product of the cosine latitude and sine polar distance. The final result is the cosine of the hour angle.
(b) When using logarithmic sines, cosines, \&c. Add together the altitude, polar distance, and latitude, take half the sum, and from this subtract the altitude and note the difference.

Then add together the cosecant of the polar distance, the secant of the latitude, the cosine of the half sum, and the sine of the difference. Subtract 20 from the sum of these and divide by 2 . The result is the logarithmic sine of half of the hour angle.

The hour angle being found, the corresponding apparent time can be found by multiplying by 4 and dividing by 60 , as already shown.*
27. Determination of the Time.-In all these examples the

[^4]time so found is the time which has elapsed between noon and the time of observation, if the observation is made in the afternoon.

If made in the forenoon, the time representing the hour angle is the time yet to elapse from time of observation and noon.

Thus, in the example, the time corresponding to the calculated hour angle is 5 h .48 min .28 secs.; hence, if this is obtained from an afternoon observation, the apparent time at place of observation is 5 h. 48 min. 28 secs. p.m.

If the observation was made during the forenoon, then the apparent time at the place of observation is found by deducting hour-angle time from 24 hours, thus-

| H. | Min. | Secs. |
| ---: | ---: | :---: |
| $\mathbf{2 4}$ | 0 | 0 |
| 5 | 48 | 28 |

and $18 \quad 11 \quad 32$ is the apparent time at place of observation, reckoned from the previous noon.
28. Fig. 16 illustrates what we have been considering when the sun and the observer are on the same side of the equator.

Fig. 17 illustrates the conditions when the sun and observer are on different sides.

Example 8.—Alt. of sun on 21st Oct. $=10^{\circ} 12^{\prime}$. Declination for that date, $10^{\circ} 46^{\prime} \mathrm{S}$, therefore polar distance $=100^{\circ} 46^{\prime}$. Latitude $=55^{\circ} 52^{\prime}$. To find the hour angle by approximate rule-

$$
\begin{aligned}
\operatorname{Cos} \mathbf{H A} & =\frac{\operatorname{Sin} 10^{\circ} 12^{\prime}-\sin 55^{\circ} 52^{\prime} \times \cos 100^{\circ} 46^{\prime}}{\operatorname{Cos} 55^{\circ} 52^{\prime} \times \sin 100^{\circ} 46^{\prime}}, \\
\operatorname{Cos} H A & =\frac{\cdot 177+\cdot 827 \times \cdot 187}{561 \times \cdot 982}=\cdot 602
\end{aligned}
$$

which is equivalent to an hour angle of $52^{\circ} 59^{\prime}$.*
The altitudes in these examples are supposed to be the true altitudes of the bodies-i.e, the observed altitudes corrected where necessary for semi-diameter, dip, and refraction. Correction for dip and refraction is always subtracted.

[^5]The same question by logarithmic method-

| $\begin{array}{ll} \text { Alt. } & = \\ \text { P. D. } & = \\ \text { Lat. } & = \end{array}$ | $=10^{\circ} 12^{\prime}$ | Cosecant $=10.0077134$ |  |
| :---: | :---: | :---: | :---: |
|  | $=100^{\circ} 46^{\prime}$ |  |  |
|  | $=55^{\circ} 52^{\prime}$ | Secant | $=10 \cdot 2509438$ |
|  | 2) $166^{\circ} 50^{\prime}$ |  |  |
| Sub. alt. $=\begin{array}{r}83^{\circ} 25^{\prime} \\ 10^{\circ} 12^{\prime}\end{array} \quad$ Cosine $=9.0593672$ |  |  |  |
|  |  |  |  |  |  |
| Difference | e $73^{\circ} 13^{\prime}$ | Sine | $=9 \cdot 9810950$ |
|  |  |  | 2)19•2991194 |
|  | Sine $26^{\circ} 30^{\prime} \begin{aligned} & 7^{\prime \prime}=9 \cdot 6495597 \\ & \\ & 2\end{aligned}$ |  |  |
|  |  | $3^{\circ} \quad 0^{\prime} 1$ |  |

29. We are now in a position to apply these rules to assist us in finding the longitude.

Let a ship be in lat. $57^{\circ}$ north on 12 th June, 1889, and an observation of sun's alt. taken at 7 h .52 min . a.m., Greenwich time, equivalent to 19 h .52 min . reckoned from previous noon.

Let the altitude be $35^{\circ} 19^{\prime}$.
The declination for date is $23^{\circ} 11^{\prime}$ north, hence polar distance is $90^{\circ}-23^{\circ} 11^{\prime}=66^{\circ} 49^{\prime}$.

Then by approximate rule-

$$
\operatorname{Cos} \mathbf{H A}=\frac{\operatorname{Sin} 35^{\circ} 19^{\prime}-\sin 57^{\circ} \times \cos 66^{\circ} 49^{\prime}}{\operatorname{Cos} 57^{\circ} \times \sin 66^{\circ} 49^{\prime}}
$$

$$
\operatorname{Cos} \mathrm{H} \mathrm{~A}=\frac{.578-.839 \times \cdot 394}{.545 \times \cdot 919}=\cdot 494
$$

Referring to a table of natural sines and cosines, we find that $\cdot 494$ represents an angle of $60^{\circ} 23^{\prime}$, and

$$
\frac{60^{\circ} 23^{\prime}{ }_{4 / 60}}{4 \mathrm{~h} .1 \text { min. } 32 \text { sec. }}=\text { hour angle }
$$

Now, subtract this from 24 h . and we have-
H. Min. Sec.

2400
$4 \quad 1 \quad 32$
$19 \quad 58 \quad 28=$ apparent time at ship.

The difference between this and the Greenwich time at time of observation is-


Now, since $4^{\prime}$ represents $1^{\circ}$ or $60^{\prime}$, we have the following pro-portion:-

$$
4^{\prime}: 6^{\prime} 28^{\prime \prime}:: 1^{\circ}: x
$$

Reducing and working out, we have-

| $\frac{4^{\prime}}{60}: 6^{\prime} 28^{\prime \prime}:: 1^{\circ}:$ answer. |  |
| ---: | :--- |
| $\frac{60}{240}$ | $\frac{388\left(1^{\circ} 37^{\prime}\right.}{}$ |
|  | $\frac{240}{148}$ |
|  | $\frac{60}{8880}$ |
|  | $\frac{720}{1680}$ |
| 1680 |  |

$\therefore 1^{\circ} 37^{\prime}$ is the required longitude east of Greenwich, or more simply-

$$
\frac{6^{\prime} 28^{\prime \prime}}{4}=1^{\circ} 37^{\prime}
$$

Observation made on 27 th February, 1895, when watch showed-

| H. | Min. | Sec. |
| ---: | ---: | ---: |
| 10 | 25 | 30 |
| +12 | 0 | 0 |
| 22 | 25 | 30 |

Declination-

$$
\begin{array}{rlrl} 
& \begin{array}{rrrr}
8^{\circ} & 19^{\prime} & 25^{\prime \prime} & \text { S. on 27th. } \\
+ & 0^{\circ} & 1^{\prime} & 30^{\prime \prime} \\
\text { for difference. }
\end{array} \\
\hline & 8^{\circ} & 20^{\prime} & 55^{\prime \prime}
\end{array}
$$

P. D. $98^{\circ} 20^{\prime} 55^{\prime \prime}$


The hour angle in the same question, worked out with natural sines and cosines, is as follows :-

$$
\begin{array}{lrr}
\text { Alt. } & 20^{\circ} 42^{\prime} & \text { Sin } \cdot 353 \\
\text { Lat. } & 55^{\circ} 52^{\prime} & \text { Sin } \cdot 828 \text {, cos. } \cdot 561 \\
\text { Polar Dist. } 98^{\circ} & 21^{\prime} & \text { Cos. } \cdot 145, \sin \cdot 989,
\end{array}
$$

Hence

$$
\text { Cos hour angle }=\frac{\cdot 353+\cdot 828 \times \cdot 145}{\cdot 561 \times \cdot 989}=851
$$

or an angle of $31^{\circ} 41^{\prime}$; and, therefore, the corresponding hour angle is 2 h .6 min .;
and
$24 \mathrm{~h} .-2 \mathrm{~h} .6 \mathrm{~m} .=21 \mathrm{~h} .54 \mathrm{~m}$.
Add equation of time, as before $=13 \mathrm{~m}$.
Or Greenwich mean time $=22 \mathrm{~h} .7 \mathrm{~m}$.
In the remarks made and examples given (Articles 22-29), we have dealt only with apparent time. Thus the hour angles determined showed the angular distance (angle $a$, or arc of the equator D T, Figs. 16 and 17) between the centre of the actual
sun and the meridian of the observer. And this would be quite sufficient to aid in finding the longitude were it not from the fact that the apparent motion of the sun is not uniform, and varies at different times of the year. To get an uniform measure of time, recourse is had to a mear sun, which is supposed to move uniformly, and the time reckoned from it is called mean time.

From this it will be seen that, having got apparent time, we must bring this to mean time, as our clocks and chronometers are regulated to indicate this uniform measure.

The difference between apparent and mean time is called the equation of time, and is registered with other necessary values in the Nautical and other almanacs. This apparent variation in the motion of the sun is due to the unequal motion of the earth in its orbit round the sun, combined with the obliquity of the axis to the ecliptic (see Fig. 10, Article 13).

To an observer, therefore, at sea, desirous of obtaining his longitude, it is necessary to know (1) the hour angle, and from that ( 2 ) the apparent time corrected by (3) the equation of time, to enable him to get (4) the mean time at ship.

The difference between the mean time so obtained and the Greenwich time, as noted by chronometers changed into angular measure, in the proportion of $15^{\circ}$ to each hour, gives the longitude.
30. When the sun is over the equator (or at the equinoxes on 20th March and 22 nd September) there is no declination, hence the rule for the hour angle at that time may be simply expressed as follows :-

$$
\operatorname{Cos} H A=\frac{\operatorname{Sin} \text { alt }}{\operatorname{Cos} \operatorname{lat}}
$$

This follows from the polar distance at these times being equal to $90^{\circ}$, the cosine of which is $=0$, and the $\sin$ is $=1$.

Example 8a.-Alt. of sun on 20th March in lat. $56^{\circ} \mathrm{N}$. was $19^{\circ} 30^{\prime}$. What is the hour angle?
Here $\quad \operatorname{Cos} \mathrm{H} \mathrm{A}=\frac{\operatorname{Sin} 19^{\circ} 30^{\prime}}{\operatorname{Cos} 56^{\circ}}=\frac{\cdot 334}{\cdot 5 \tilde{9} 9}=\cdot 597$,
or $53^{\circ} 20^{\prime}$ of angle, which represents in apparent time 3 h . 33 min .20 secs.

Example 9.-Alt. of sun on 22 nd September in lat. $56^{\circ}$ N. was $18^{\circ}$. What is the hour angle? Here, as before, we may write

$$
\begin{aligned}
& \operatorname{Cos} \mathrm{HA}=\frac{\text { Sin alt }}{\operatorname{Cos} \operatorname{lat}}, \\
& \operatorname{Cos} \mathrm{HA}=\frac{\operatorname{Sin} 18^{\circ}}{\operatorname{Cos} 56}=\frac{.309}{.559}=\cdot 552,
\end{aligned}
$$

which represents an hour angle of $56^{\circ} 29^{\prime}$.

The longitude may also be found by taking similar altitudes before and after noon. Thus, at 8.40 a.m., Greenwich time by chronometer, the true altitude of the sun's centre was $35^{\circ} 31^{\prime}$, and by a second observation after noon it was found that when the sun's centre had the same altitude, the chronometer showed $3.56 .30 \mathrm{p} . \mathrm{m}$. If we add these two times together, and divide by 2 , we get the time by chronometer when the sun was on the meridian. Thus to $8.40 \mathrm{a} . \mathrm{m}$. and $3.56 .30 \mathrm{p} . \mathrm{m}$. add 12, and we have-

| H. | Min. | Sec. |
| ---: | ---: | ---: |
| 8 | 40 | 0 |
| 15 | 56 | 30 |
| 24 | 36 | 30 |
| 12 | 18 | 15 |

as chronometer time of sun's passage of the meridian.

31. Besides the sun we have also the moon and stars as points of observation.

The Greenwich Observatory was founded by Charles II. for the purpose of charting the heavens so as to facilitate the taking of Lunars, as they were called.

Before the chronometer was brought to be a reliable time measurer, the moon in its motion across the sky was made to play the part of a clock from which Greenwich time could be obtained. To do this it was necessary to have the moon's positions relatively to the sun carefully noted for certain periods at Greenwich, so that the angular distance of these bodies being known for any special date or during any hour of the day, an observer might be enabled to know the correct Greenwich time ; the moon acting in this way like the hour hand of a clock, and showing the time by its distance from some known point (see Article 38).
32. It is obvious that we can take altitudes of the moon and stars in the same manner as we do for the sun ; and if these are
taken when these bodies are on the meridian, we may find our latitude just as we do by observations of the sun, the different declinations of the moon and stars being known and recorded in tables.
33. We may also obtain longitudes from altitudes of the moon or stars, but in this case we must remember that the angular distances from the meridian so obtained do not give us the apparent time, unless we know at what hour the body passes the meridian. If this be known, we have only to add or subtract the time value of the angular distance, as in the case of the sun.

If we do not know the time at which the body passes the meridian, we have recourse to another method, which is of general application. In this case we make use of the right ascensions of the stars
34. Right Ascension.-Right ascension is the time distance of any of the heavenly bodies measured on the equator from the point of intersection of the equator and the ecliptic.* Thus in Fig. 10 (see p. 17), S in the central figure is such a point, as the equatorial line $\mathrm{E} Q$ cuts the path of the earth or ecliptic in S.

These distances are tabulated for reference, and are used for the determination of time when using altitudes of the stars.

Thus if we take an altitude of a star and work out by rule its meridian distance expressed in hours and fractions of an hour, we have the star's distance from the meridian in time measure.
35. Now, let us consider the case of a star to the west of the meridian (the meridian here spoken of is, as before, the line of longitude passing through the place of observation, hence the star when on this meridian is due south of the observer).
I. Its altitude is taker and its distance from the meridian calculated.
II. We now look up the star's right ascension and add it to the distance from the meridian.
III. The result obtained is the right ascension of the meridian.
IV. From this we subtract the sun's right ascension; and

V . The result is the hour angle.
This may be better understood by a consideration of Fig. 19.
Let $P$ be one of the poles and the circle $O M S_{1} S$ the apparent circuit of the sun and stars.

Let $\mathrm{P}_{1}$ be the direction of the star's place $\mathrm{S}_{1}$, and PS the direction of the sun's place S , and let P M be the line of the meridian through the place of observation.

* Usually called the first point of Aries, although at the present time the point of intersection has shifted.

Let PO be the direction of the point O from which right ascensions are measured, then the angular distance

OS is the right ascension of the sun, $0 \mathrm{SS}_{1}$ is the right ascension of the star, and $\mathrm{OSS}_{1} \mathrm{M}$ is the right ascension of the meridian;
but

$$
\mathrm{OSS}_{1}+\mathrm{S}_{1} \mathrm{M}=\mathrm{OSS}_{1} \mathrm{M}
$$



Fig. 19.
36. Hence the right ascension of the meridian is found by adding the right ascension of the star to the star's meridian distance.

And since $\mathrm{OSS}_{1} \mathrm{M}-\mathrm{OS}=\mathrm{SS}_{1} \mathrm{M}$, we see that if we subtract the right ascension of the sun from the right ascension of the meridian, we have the hour angle of the sun.
37. From the foregoing it will be seen that by using the right ascensions of the sun and stars, we can find the interval of time since the sun passed the meridian, although he may not be visible-the star's position being used as a step to help us to get this time measure.

Example 10.-When star is west of the meridian.
Alt. of Arcturus on 8th October, $1890=14^{\circ}$.
By rule for hour angle (see Article 24) we find that the
Star's distance in time from meridian or hour angle н. Min.

The star's right ascension is . . . . . 1410
Therefore, right ascension of meridian is . . . 2026
Deduct sun's right ascension, . . . . . 1257
Therefore, the sun's time is . . . . . = 729

That is to say, it is 7 hours 29 minutes past noon at place of observation, or

|  | H. Min. Sec.  <br> Subtract 7 29 0 <br> p.m. apparent time.    <br>  0 12 32 | equation of time. |  |  |
| :--- | ---: | ---: | ---: | :--- | :--- |
|  | 7 | 16 | 28 | mean time. |

Example 11.-When star is east of the meridian.
Alt. of Aldebaran on 7 th October, $1890=16^{\circ} 20^{\prime}$
By rule we find, as before, that the
Star's distance in time from meridian or hour angle is 5 h .39 min . Subtract this from 24 h ., and H. Min.
we have . . . . . . . . 1821
The star's right ascension is . . . . . 430
Therefore, R A of the meridian is . . . . 2251
Deduct sun's right ascension, . . . . 1254
Therefore, time since sun passed meridian . . = $9 \quad 57$

|  | H. | Min. | Sec. |  |
| :--- | :--- | :--- | :--- | :--- |
| Or, | 9 | 57 | 0 | apparent time. |
| Subtract | 0 | 12 | 17 | equation of time |
|  | 0 |  |  |  |
|  | 9 | 44 | 43 | mean time. |

The right ascension of the sun, as registered in tables for use in such problems as the foregoing, is known as the apparent right ascension of the sun, because, like apparent time, it is determined from the sun's actual position at the time.

When the mean sun is considered, we have then the right ascension of the mean sun, and this is also known as the Sidereal Time.

A sidereal day is measured by one complete rotation of the earth on its axis, and is the time interval between two successive transits of the same star on the meridian.

The apparent right ascension of the actual sun and the sidereal time differ from each other by the equation of time.

The daily values of sidereal time, as well as those of apparent right ascension, equation of time, \&c., are registered in the Nautical Almanac for mean noon at Greenwich.
38. To Find the Longitude by Lunar Distance.-From an early period the position of the moon in her monthly circuit relatively to the stars has been kept, and now we can ascertain
from the Nautical Almanac the angular distance of the moon from a number of well-known stars on certain dates and at small intervals of time.

These observations made at Greenwich are all reduced to results obtainable if the observer had been situated at the earth's centre; hence when any observations are taken of a similar character and for purposes of comparison at any other part of the earth's surface, these must also be reduced to the earth's centre.

Now, if we have a table showing the Greenwich times at which the moon and a star are at certain angular distances apart, we can, by taking a measurement of the angular distance between the moon and the same star, find how such a measurement corresponds with any of the registered distances for that date, and so determine the corresponding Greenwich time.
39. Thus if, in Fig. 20, B and C represent two different positions of the moon from the star at $A$ and $O$ the earth's centre,


Fig. 20.
then if we know the exact time when the moon is at $B$ we can calculate the time which will correspond to the position at $\mathbf{C}$ if we know the rate of motion of the moon.
40. If, therefore, by means of an observation we find the angular distance corresponding to AC, and if on referring to tables find the distance $\mathbf{A B}$ with the corresponding time, we can determine the time corresponding to AC or that of observation.

The moon may therefore be looked upon as the hour hand of a clock.
41. Such observations being taken upon the surface of the earth have to be corrected, as already stated, to correspond to
what would obtain if the observations could be made from the earth's centre.

Thus in Fig. 21 let $O$ be the earth's centre and $P$ the position of an olserver on the earth's surface, then any object situated


Fig. 21.
at $M$ will appear from the position $P$ as though projected in the line drawn through P M. If viewed from the centre $O$ it would appear as though projected in the line OM. This apparent


Fig. 22.
shift in position is called parallax, as already explained (see Article 9).

The further the object is away the smaller will the apparent shift of position appear.
42. Now let $M$ denote the position of the moon, and $S$ some other body, such as the sun or a star, the angular distance
between which we wish to determine; then by observation we can measure the angle MPS, and by calculation obtain the angle MOS, or the angle subtended by these objects at the earth's centre.

If $Z$ (see Fig. 22) be the zenith of the observer, and $M$ and $S$ the observed position of the moon and sun, and M P S the observed angular distance of the centres of these bodies, then if the true altitudes of these bodies are also known, Z S M is a spherical triangle, of which the side Z M is the co-altitude of M, and Z S the co-altitude of S . And the relations of such a triangle are-

$$
\operatorname{Cos} a=\frac{\operatorname{Cos} \mathrm{SM}-\cos \mathrm{ZM} \times \cos \mathrm{ZS}}{\operatorname{Sin} \mathrm{Z} \mathrm{M} \times \sin \mathrm{ZS}}
$$

but since $Z \mathbf{M}$ is the co-alt. of $M$, and $Z \mathrm{~S}$ the co-alt. of S , we can write the equation as-

$$
\operatorname{Cos} a=\frac{\operatorname{Cos} S M-\sin \text { alt } M \times \sin \text { alt } S}{\operatorname{Cos} \text { alt } M \times \cos \operatorname{alt} S}
$$

Working this out, we get the value of $\cos a$ in the spherical triangle Z S M.

In this case all the angular measurements have been made from $P$ as a point on the earth's surface. We have now to find how these are affected if supposed made from the earth's centre O .
43. Let the observed angular distance be denoted by $\mathbf{D}$.

$$
\begin{array}{ll}
" & \text { alt. of moon by } \mathrm{M} . \\
" & " \text { sun by } \mathrm{S} .
\end{array}
$$

Then we have-

$$
\operatorname{Cos} a=\frac{\operatorname{Cos} \mathrm{D}-\sin \mathrm{M} \times \sin \mathrm{S}}{\operatorname{Cos} \mathrm{M} \times \cos \mathrm{S}}
$$

Working this out, we get the value of $\cos a$ in the spherical triangle Z S M.

We have now to form a new spherical triangle, the sides of which are corrected for parallax and refraction.

Let the corrected alt. of moon be denoted by $m$. $\quad$ of sun,$~$
and the true angular distance sought for by $d$; then, since the angle $a$ is unaffected by these changes in the sides, we have-

$$
\operatorname{Cos} a=\frac{\operatorname{Cos} d-\sin m \times \sin s}{\operatorname{Cos} m \times \cos s}
$$

or by transposition

$$
\operatorname{Cos} d=\cos a \times \cos m \times \cos s+\sin m \times \sin s
$$

and since the value of $\cos a$ has already been determined, and as we know the corrected values of the other quantities on the righthand side of the equation, we get the value of $\cos d$, and by reference to a table of natural sines, the corresponding angle is found, and which is the true angular distance between the bodies, as measured from the earth's centre.

If in this equation we substitute the value of $\cos a$ as given in the first equation of this Article, we have
$\operatorname{Cos} d=\left(\frac{\operatorname{Cos} \mathrm{D}-\sin \mathrm{M} \times \sin \mathrm{S}}{\operatorname{Cos} \mathrm{M} \times \cos \mathrm{S}}\right) \times \cos m \times \cos s+\sin m \times \sin s$.
Example 12.-Let observed distance of sun and moon be $39^{\circ} 58^{\prime}$.

Observed alt. of sun . . . . $=17^{\circ} 20^{\prime}$.
", moon . . $=25^{\circ} 18^{\prime}$.

Let correction for moon's parallax be $\quad+58^{\prime}$. " , refraction be . . $3^{\prime}$.
This corrected alt. of sun is $17^{\circ} 20^{\prime}-3^{\prime}=17^{\circ} 17^{\prime}$.

$$
" \quad, \quad \text { moon is } 25^{\circ} 18^{\prime}+58^{\prime}=26^{\circ} 16^{\prime}
$$

Then cosine of corrected distance is-
$\operatorname{Cos} d=\left(\frac{\operatorname{Cos} 39^{\circ} 58^{\prime}-\sin 25^{\circ} 18^{\prime} \times \sin 17^{\circ} 20^{\prime}}{\operatorname{Cos} 25^{\circ} 18^{\prime} \times \cos 17^{\circ} 20^{\prime}}\right)$
$\times \cos 26^{\circ} 16^{\prime} \times \cos 17^{\circ} 17^{\prime}+\sin 26^{\circ} 16^{\prime} \times \sin 17^{\circ} 17^{\prime}$
or,
$\operatorname{Cos} d=\left(\frac{.766-\cdot 427 \times \cdot 298}{.904 \times \cdot 95}\right) \times(.897 \times \cdot 955)+\cdot 443 \times \cdot 297$, or,
$\operatorname{Cos} d=\frac{\cdot 766-\cdot 127}{\cdot 863} \times \cdot 856+\cdot 131$.

## Hence

$\operatorname{Cos} d=\cdot 633+\cdot 131=\cdot 764$,
and the angle corresponding to this is $40^{\circ} 6^{\prime}$, which is the true or corrected angular distance required, represented by A C in Fig. 20.

In the Nautical Almanac we have the lunar angular distances with the corresponding times registered. On finding, therefore, in the table an angular value of $40^{\circ} 6^{\prime}$, we also get the Greenwich time corresponding to that angle.
44. Azimuth.-The azimuth of a body is the angular distance in a horizontal plane between the object and any point north or south of the observer.

Thus in Fig. 23 the angle $b$ contained between the tangents $\mathrm{L} x$ and $\mathrm{L} y$ is the azimuth of the object $\mathrm{S}, \mathrm{P}$ being the North Pole and $L$ the place of the observer.


Fig. 23.
From a consideration of the rules already given when dealing with spherical triangles, we have

$$
\operatorname{Cos} b=\frac{\cos \mathrm{PS}-\cos \mathrm{SL} \times \cos \mathrm{PL}}{\sin \mathrm{~S} \mathrm{~L} \times \sin \mathrm{PL}}
$$

because we are now considering the sides of the spherical triangle S P L in relation to the angle $b$ at the observer, instead of, as in former examples, considering them in relation to the angle $a$ at the pole, hence the above equation may be written-

$$
\text { Cos azimuth }=\frac{\operatorname{Sin} d e c-\sin \text { alt } \times \sin \text { lat }}{\operatorname{Cos} \text { alt } \times \cos \text { lat }} .
$$

Example 13.-If the sun's true alt. at a place in lat. $55^{\circ} 54^{\prime} \mathrm{N}$. is $19^{\circ} 14^{\prime}$ on 20 th June, what is the azimuth ?

Declination for date $=23^{\circ} 26^{\prime}$, hence polar distances is $90^{\circ}$ $-23^{\circ} 26^{\prime}=66^{\circ} 34^{\prime}$.
$\therefore \quad$ Sin dec or $\cos P D=\cdot 398$
Sin alt $=\cdot 329$
Cos alt $=.944$
Sin lat $=828$
Cos lat $=551$.
Then Cos azimuth $=\frac{.3977-\cdot 329 \times \cdot 828}{.944 \times \cdot 561}=\cdot 2366$,
and which represents an azimuth of $76^{\circ} 19^{\prime}$-that is to say, the sun bears $76^{\circ} 19^{\prime}$ from the true north.

See same question worked by logarithms as follows :By Logarithms.

Dec. $\quad 23^{\circ} \quad 26^{\prime}$
90 - alt. $70^{\circ} \quad 46^{\prime}$ Cosec. $10 \cdot 024943$
Lat. - $55^{\circ} \quad 54^{\prime} \quad$ Sec. $10 \cdot 251317$

$$
2 \longdiv { 1 5 0 ^ { \circ } \quad 6 ^ { \prime } }
$$

$$
75^{\circ} \quad 3^{\prime} \quad \text { Cos. } \quad 9 \cdot 411579
$$

Subtract dec. $23^{\circ} \quad 26^{\prime}$
$51^{\circ} \quad 37^{\prime} \quad$ Sin.
$9 \cdot 894246$
$39 \cdot 582085$
20
2) 19.582085

Log. sin. of half the angle, $\quad 9 \cdot 791042$ Therefore this angle is $=38^{\circ} 10^{\prime}$

Azimuth, $76^{\circ} \quad 20^{\prime}$
At what time is the sun due west of the same place on 21st June?

Here, as the azimuth must be $90^{\circ}$ and $\cos 90=0$, we have by the foregoing rule-

$$
0=\frac{\cdot 398-\sin \text { alt } \times \cdot 828}{\operatorname{Cos} \text { alt } \times \cdot 561},
$$

or

$$
\frac{\cdot 398}{\text { Cos alt } \times \cdot 561}=\frac{\sin \text { alt } \times \cdot 828}{\cos \text { alt } \times \cdot 561} ;
$$

therefore

$$
\text { Sin alt }=\frac{\cdot 398}{.828}=\cdot 480
$$

hence

$$
\text { Alt }=28^{\circ} 42^{\prime}
$$

Now, by rule of finding the hour angle we have, by using the value $\cdot 480$ just found-

$$
\operatorname{Cos} \mathrm{HA}=\frac{\cdot 480-828 \times \cdot 398}{561 \times \cdot 917}=\cdot 2918
$$

which represents $73^{\circ} 2^{\prime}$ of an hour angle, and equivalent to-
H. Min. Sec.
$4 \quad 52 \quad 8$ apparent time.
Subtract equation of
time for date

$$
\begin{array}{crr}
0 & 1 & 37 \\
\hline 4 & 50 & 31
\end{array}
$$

as mean time at place when the sun will be due west.
For Greenwich time the difference of time between Greenwich and the place of observation must be added or subtracted according as the place of observation is to west or east of Greenwich.
45. Amplitude.-Amplitude is the angle between a heavenly body and the prime vertical, the body being on the horizonthat is to say, the angle lying on either side of the east or west points.

The rule for finding this angle follows from that given for azimuth. Since the angle $b$ (Fig. 23) may be supposed to consist


Fig. 23a.
of two parts, viz. : $90^{\circ}+$ amplitude (the $90^{\circ}$ being the angle from the pole to the prime vertical ${ }^{*}$-see Fig. 23a).

[^6]Taking the rule for azimuth, viz. :-

$$
\text { Cos azimuth }=\frac{\operatorname{Sin} \operatorname{dec}-\sin \text { alt } \times \sin \text { lat }}{\operatorname{Cos} \text { alt } \times \cos \text { lat }}
$$

we have first to consider that as the alt is $=0, \sin$ alt $=0$, and cos alt $=1$, therefore the above equation becomes-

$$
\text { Cos azimuth }=\frac{\text { Sin dec }}{\text { Cos latt }}
$$

and this would enable us to find the azimuth of a body when on the horizon.

If now we consider the angle $b$, or azimuth, as made up of two parts, as $90+$ amplitude (see Fig. 23a), we may write the above equation as-

$$
\operatorname{Cos}(90+\text { amplitude })=\frac{\operatorname{Sin} \operatorname{dec}}{\operatorname{Cos} \operatorname{lat}}
$$

But cos $(90+$ amplitude $)$ is $=\sin$ amplitude (see Introductory Chapter), therefore we have-

$$
\text { Sin amplitude }=\frac{\text { Sin dec }}{\text { Cos lat' }}
$$

and this is true whether the angle $b$ is equal to $90+$ amplitude or 90 - amplitude.
46. Sumner's Method of Finding the Longitude. -Since the sun must always be vertical over some point on the earth's surface, the angular distance of an observer from that point may be found by taking the altitude of the sun and subtracting that altitude from $90^{\circ}$. Hence observers on any part of the earth's surface, situated at this angular distance, will see the sun at the same altitude.

In other words, if on a globe we put a mark to represent where the sun is vertical, and describe a circle with a radius whose angular measure is 90 - alt., we have what is called a circle of equal altitude.

If at a different time another altitude of the sun be taken from the same place, and a corresponding circle drawn, it will be found that these two circles intersect each other at two points; the observer must, therefore, be at one or other of these points.

Thus, in Fig. 24, let the large circle represent the earth, and $S_{1} S_{2}$ two vertical positions of the sun, then $P E Q$ will represent a circle of equal altitude from centre $S_{1}$ and $P R Q$ another circle of equal altitude from centre $\mathrm{S}_{2}$. The circles intersect at P and Q .

Let $\mathbf{P}$ be the point where the observer is situated, then any
two smali portions of these circles may be considered as straight lines (shown by the darker parts at $\mathbf{P}$ crossing each other in the point P). These are called lines of position or lines of bearing, and these are always at right angles to the direction of the sun.


Fig. 24.
If the observer is in a ship at sea, some change of position will naturally have taken place between the times at which the altitudes were taken, the lines of position will not cross each other, and we must connect them by a line representing the course and bearing in the interval.

In practice the lines of position are found by assuming two latitudes within one degree of each other, and calculating the longitudes from an altitude and each of these assumed latitudes, and joining these positions on the chart by a short line.

This process is repeated at the second observation, using the same latitudes and the new altitude, hence a new pair of longitudes are found, and, therefore, a new line; these lines are lines of position, and are really approximate parts of the circles of equal altitudes obtained by this calculation.

As the ship should be somewhere on these lines at the time of observation, if the course and distance be laid off from the first formed line, it can be made to connect with some part of the second formed line by drawing from the end of it with a parallel ruler a line parallel to the first formed line of position. The same latitude is used because we are dealing with a circle of equal altitude.

Thus in Fig. 25 A B and OD are two lines of position found by calculation as described. A B is part of the circle of equal altitude found at a forenoon observation, and CD similarly at an afternoon observation. During the interval the course and distance may be represented by the line EF. By means of the parallel ruler, GH is laid off parallel and equal to EF ; the


Fig. 25.
point G may be chosen on any part of the line AB; then by means of the parallel ruler draw HO parallel to AB, and the point $C$ is the position of ship at last observation.

Example.-Let the assumed latitudes be $56^{\circ}$ and $57^{\circ}$ respectively, and the altitudes $35^{\circ} 19^{\prime}$ and $31^{\circ} 33^{\prime}$, then by (1) and (2) we have the line A B, and by (3) and (4) the line OD.

| (1) | Alt. | $35^{\circ} 19$ | 19' | $0^{\prime \prime}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | P. D. | $66^{\circ} 49$ | $49^{\prime}$ | $0^{\prime \prime}$ | Cosec | $=$ | 10.0365664 |
|  | Lat. | $56^{\circ} \quad 0$ | $0^{\prime}$ | $0^{\prime \prime}$ | Sec | $=$ | $10 \cdot 2524383$ |
|  | Sum | $158^{\circ} 8$ | $8^{\prime}$ |  |  |  |  |
|  | Half sum | $79^{\circ}$ | $4^{\prime}$ | $0^{\prime \prime}$ | Cos | $=$ | 9•2779911 |
|  | Ded. alt. | $35^{\circ} 19$ | 19' | $0{ }^{\prime \prime}$ |  |  |  |
|  |  | $43^{\circ} 45$ | $45^{\prime}$ | $0^{\prime \prime}$ | Sin | = | 9•8398004 |
|  |  |  |  |  |  |  | $\begin{aligned} & \overline{39 \cdot 4067962} \\ & 20 \end{aligned}$ |
|  |  |  |  |  |  |  | 2)19-4067962 |
|  | Log. sin of | f $\frac{1}{2}$ hour | $r$ ang | gle |  | $=$ | $9 \cdot 7033981$ |
| Or, |  |  |  | angle | $=30^{\circ}$ | $20^{\prime}$ | $\begin{gathered} 22^{\prime \prime} \\ 2 \end{gathered}$ |
| henc |  |  | hour | r angle | $60^{\circ}$ | $40^{\prime}$ | $44^{\prime \prime}$ |
| Or, |  |  |  |  | $\begin{array}{rr} \text { I. } & \text { Min. } \\ 4 & 2 \\ 2 & 0 \end{array}$ | $\begin{array}{r} \text { Sec. } \\ 42 \\ 0 \end{array}$ |  |
|  |  |  | T. | Sub. | $7 \quad 57$ | $\begin{aligned} & 18 \\ & 24 \end{aligned}$ |  |
|  |  |  | M. | T. | $\begin{array}{ll} 7 & 56 \\ 7 & 59 \end{array}$ | $\begin{aligned} & 54 \\ & 48 \end{aligned}$ |  |
|  |  |  |  |  | 02 | 54 |  |
|  |  |  |  | $43^{\prime} 30$ | W. lon |  |  |
| (3) |  | $31^{\circ} 33$ | $33^{\prime}$ |  |  |  |  |
|  | P. D. | $66^{\circ} 47$ | 47' | $46^{\prime \prime}$ | Cosec | = | $10 \cdot 0366317$ |
|  | Lat. | $56^{\circ}$ | $0^{\prime}$ | $0^{\prime \prime}$ | Sec | = | $10 \cdot 2524383$ |
|  |  | $2) 154^{\circ} 20$ | $20^{\prime}$ | $46^{\prime \prime}$ |  |  |  |
|  |  | $\begin{aligned} & 77^{\circ} \\ & 31^{\circ} \end{aligned}$ | $\begin{aligned} & 10^{\prime} \\ & 33^{\prime} \end{aligned}$ | $\begin{gathered} 23^{\prime \prime} \\ 0^{\prime \prime} \end{gathered}$ | Cos | $=$ | $9 \cdot 3463670$ |
|  |  | $45^{\circ} 3$ | $37^{\prime}$ | $23^{\prime \prime}$ | Sin | = | $9 \cdot 8541493$ |
|  |  |  |  |  |  |  | $\begin{aligned} & 39 \cdot 4895863 \\ & 20 \end{aligned}$ |
|  |  |  |  |  |  |  | 2)19•4895863 |
|  | Log. sin of | of $\frac{1}{2}$ hour | r an | gle |  | $=$ | $9 \cdot 7447931$ |



Or $25^{\prime} 15^{\prime \prime}$ E. long.
(2) Alt. $35^{\circ} \quad 19^{\prime} \quad 0^{\prime \prime} \quad$ Sin 5781
P. D. $66^{\circ} \quad 49^{\prime} \quad 0^{\prime \prime} \quad$ Sin 919 Cos 394

Lat. $57^{\circ} \quad 0^{\prime} \quad 0^{\prime \prime} \quad$ Sin 838 Cos 544
Cos HA $=\frac{\cdot 5781-\cdot 838 \times \cdot 394}{.544 \times 919}=\frac{\cdot 5781-\cdot 3302}{.500}=\cdot 4958$
and
hour angle $=60^{\circ} \quad 16^{\prime} \quad 38^{\prime \prime}$
H. Min. Sec.

Or,
$\begin{array}{ll}4 & 1\end{array}$

| 12 | 0 | 0 |
| ---: | ---: | ---: |
| 7 | 58 | 54 |

Eq. T. Sub. 24
G. M. T.

| 7 | 58 | 30 |
| :--- | :--- | :--- |
| 7 | 59 | 48 |
| 0 | 1 | 18 |

Or $19^{\prime} 30^{\prime \prime} \mathrm{W}$. long.
(4) Alt. $31^{\circ} \quad 33^{\prime} \quad 0^{\prime \prime} \quad$ Sin $\quad 5232$
P. D. $66^{\circ} \quad 47^{\prime} 46^{\prime \prime} \quad$ Sin 919 Cos $\cdot 394$

Lat. $57^{\circ} \quad 0^{\prime} \quad 0^{\prime \prime} \quad$ Sin 838 Cos 544
$\operatorname{Cos} \mathbf{H A}=\frac{\cdot 5232-\cdot 838 \times \cdot 394}{\cdot 544 \times \cdot 919}=\frac{\cdot 5232-\cdot 3302}{\cdot 500}=\cdot 386$
and hour angle $=67^{\circ} \quad 17^{\prime} \quad 0^{\prime \prime}$

|  |  |
| :--- | :--- |
| Or, |  |
|  | Gq. T. Sub. |
|  | 4 20 8  <br>    20 |

## Or $12^{\prime} \mathbf{E}$. long.

Fote.-The working in (2) and (4) is shown by using natural sines and cosines instead of logarithmic equivalents.
47. Longitude from Observation at Sunset.-If from a ship in lat. $44^{\circ} 50^{\prime} \mathrm{N}$. the sun be observed to set at 9 h .46 min . 58 sec., as noted by chronometer, find the longitude. Date, 13th September, 1895.

Let the altitude be that of the sun's lower limb $=0^{\circ} 0^{\prime}$, and let the corrections for semi-dia. be $16^{\prime}$, to be added; refraction $33^{\prime}$, and $\operatorname{dip} 5^{\prime}$, to be subtracted. We have as the final correction to be made for true altitude $22^{\prime}$.

Let Polar dist. be $86^{\circ} 20^{\prime} \mathrm{N}$., then by the rule given on page 31 we have:-


| Or, expressed in time measurement, | ${ }_{\text {H. }}$ | $\frac{\text { Min. }}{16}$ | Sec. 40 |
| :---: | :---: | :---: | :---: |
| Equation of time, . . . . | 0 | 4 | 14 |
| Mean time at ship at sunset, | 6 | 12 | 26 |
| Mean time at Greenwich, | 9 | 46 | 58 |
| Difference of time, | 3 | 34 | 32 |
| Or $53^{\circ} 38^{\prime} \mathrm{W}$. long |  |  |  |

## A SELECTION FROM

## CHARLES GRIFFIN \& C0.'S PUBLICATIONS

or

## SCIENTIFIC AND TRCHNICAL WORRS.



MESSRS. CHARLES GRIFFIN \& OOMPANY'S PUBLICATIONS may be obtained through any Bookseller in the United Kingdom, or will be sent on receipt of a remittance to cover published price and postage. To prevent delay, Orders should be accompanied by a Oheque or Postal Order crossed "Union of London and Smith's Bank, Chancery Lane Branch."


E COMPLETE TECHNICAL, MEDICAL, and GENERAL CATALOGUES forwarded Post-free on Application.

## LONDON: <br> EXETER STREET, STRAND.

$$
\frac{111107 .}{\text { C. 32. }}
$$

# GRIFFIN'S INTRODUCTORY SCIENCE SERIES. 

BOTANY.

## FULLY ILLUSTRATED.

BIRD-LIFE.
CHEMISTRY. INORGANIC CHEMISTRY. By Prof. Dupre, F.R.S., and Dr. Wilson Hake. Third Edition, Re-issued,

6/
THE THRESHOLD OF SOIENCE.
By Dr. Alder Wright. Second Edition, OHEMICAL RECREATIONS. By J. J. Griffin, F.C.S. Tenth Edition, Complete,
(Or in 2 parts, sold separately.)
GEOLOGY.
OPEN-AIR STUDIES in GEOLOGY. By Prof. G. A. J. Cole, F.G.S., M.R.I.A. Second Edition,
(I. PRAOTICAL GEOMETRY, Fourth Edition,

4/6
II. MACHINE DESIGN,
Fourth Edition, By S.
H. M.Inst.C.E. Wells,

By Prof. Jamieson, late of the Glasgow and West of Scotland Technical College. Seventh Edition,

3/6
MECHANICS. By Prof. Jamieson. Seventh Edition, . $3 / 6$
$\left.\begin{array}{c}\text { THE STEAM } \\ \text { ENGINE. }\end{array}\right\} \quad$ By Prof. Jaminson. Eleventh Edition, . $3 / 6$
METALLURGY. By Prof. Humboldt Sexton, Glasgow and West of Scotland Technical College. Fourth Edition, Revised,
PHYSICS. A TEXT-BOOK OF PHYSICS : By J. H. Poynting, Sc.D., F.R.S., and J. J. Thomson, M.A., F.R.S.

Vol. I.-Properties of Matter. Fourth Edition,

10/6
Vol. II.-Sound. Fourth Edition, . $8 / 6$ Vol. III.-Heat. Second Edition,. 15/
PHOTOGRAPHY. By A. Brothers, F.R.A.S. Second Edition,

[^7]
## With 12 Full-Page Illustrations from Photographs. Cloth. Second Edition, Revised. 8s. 6a.

## OPEN-AIR STUDIES IN GEOLOGY:

 An Introduction to Geology Out-of-doors.By GRENVILLE A. J. COLE, F.G.S., M.R.I.A., Professor of Geology in the Royal College of Science for Ireland, and Examiner in the University of London.
General Contents. - The Materials of the Earth-A Mountain Hollow -Down the Valley-Along the Shore-Across the Plains-Dead Volcanoes -A Granite Highland-The Annals of the Earth-The Surrey Hills-The Folds of the Mountains.
"The fascinating 'Open-Air Studies' of Prof. Cole give the subject a glow of animation . . . cannot fail to arouse keen interest in geology."-Geological Magazine.
"A oharming book, beautifully illustrated"-Athenæum.

Beautifully Illustrated. With a Frontispiece in Colours, and Numerous Specially Drawn Plates by Charles Whymper. 7s. 6d.

## OPEN-AIR STUDIES IN BIRD-LIFE:

SKETCHES OF BRITISH BIRDS IN THEIR HAUNTS. By CHARLES DIXON.
The Spacious Air.-The Open Fields and Downs.-In the Hedgerows.-On Open Heath and Moor.-On the Mountains.-Amongst the Evergreens.Copse and Woodland.-By Stream and Pool.-The Sandy Wastes and Mud flats.-Sea-laved Rocks.-Birds of the Cities.-Index.
"Enriched with excellent illustrations. A welcome addition to all libraries."-Westminster Review.

LONDON: CHARLES GRIFFIN \& CO., LIMITED EXETER STREET, STRAND

Third Edition, Revised and Enlarged. Large Crown 8vo, with numerous THE FLOWERING PLANT, WITH A SUPPLEMENTARY CHAPTER ON FERNS AND MOSSES, As Illustrating the First Principles of Botany.

By J. R. AINSWORTH DAVIS, M.A., F.Z.S.,<br>Prof. of Biology. University College, Aberystwyth; Examiner in Zoology, University of Aberdeen.

[^8]POPULAR WORKS ON BOTANY BY MRS. HUGHES-GIBB.
With Illustrations. Crown 8vo. Cloth. 2s. 6d

## HOW PLANTS LIVE AND WORK:

A Simple Introduction to Real Life in the Plant-world, Based on Lessons originally given to Country Children.
By ELEANOR HUGHES-GIBB.

[^9]With Illustrations. Crown 8vo, Gilt, 2s. 6d.

## THE MAKING OF A DAISY; "WHEAT OUT OF LILIES;"

 And other Studies from the Plant World. A Popular Introduction to Botany. By ELEANOR HUGHES.GIBB, Author of How Plants Live and Work."A briget little introduction to the study of Flowers."-Journal of Botany.
"The book will afford real assistance to those who can derive pleasure from the study of Nature in the open. . . . The literary style is commendable." ${ }^{\text {-K }}$ nowledge.

## Griffin's Standard Publications

Applied Mechanies, . Rankine, Browne, Jamieson, 35, 46, 34Civil Engineering, . . Prof. Rankine,35
Design of Structures, S. Anglin, . ..... 26
Bridge-Construction, Prof. Fidler, ..... 26
Design of Beams, W. H. Atherton, ..... 26
Dock Engineering, B. Cunningham, ..... 27
Engineering Drawing, S. H. Wells, ..... 32
Engine Design, L. Hobbs, . ..... 27
Constructional Steelwork, A. W. Farnsworth, ..... 26
Central Electrical Stations, C. H. Wordingham, ..... 48
Electricity Control, L. Andrews, ..... 48
Meters,
Meters, H. G. Solomon, H. G. Solomon, ..... 48 ..... 48
Light' Railways, W. H. Cole, ..... 30
Sanitary Engineering, F. Wood, ..... 78
Traverse Tables, ..... 31
R. L. Gurden,
Practical Calculations, ..... 31
Locomotive Engineering, W. F. Pettigrew, ..... 30
Locomotive Compounding, J. F. Gairns, ..... 30
Valves and Valve-Gearing, Chas. Hurst, ..... 29
Marine Engineering, A. E. Seaton, ..... 44
The Steam Turbine, Alexander Jude, ..... 28
Marine Steam Turbine, Prof. Biles, ..... 28
Engine-Room Practice, J. G. Liversidge, ..... 29
Pocket-Book, Seaton and Rounthwaite, ..... 44
Present Day Shipbuilding, T. Walton, ..... 38
Design of Ships, Prof. Harvard Biles, ..... 38
Steel Vessels, T. Walton, ..... 38
Stability of Ships, Sir E. J. Reed, ..... 37
The Steam-Engine, Rankine, Jamieson, ..... 35, 34
Gas, Oil, and Air-Engines, Bryan Donkin, ..... 28
Petrol Motors and Cars, F. Strickland, ..... 33
The Problem of Flight, H. Chatley, ..... 33
Boilers: Land and Marine, T. W. Traill, ..... 29
"Steam" \& "Kitchen," R. D. Munro, ..... 32
Heat Efficiency of, Bryan Donkin, ..... 28
Oil Fuel, Sidney H. North, ..... 61
Machinery and Millwork, Prof. Rankine, ..... 35
Pumping Machinery, H. Daver, . ..... 36
Hydraulic Machinery, Prof. Robinson, ..... 36
Grinding Machinery, ..... 32
Lubrication and Lubricants, Archbutt \& Deeley, ..... 32
Rules and Tables, Rankink and Jamieson, ..... 35
Bonus Tables, H. A. Golding, ..... 31
Electrical Pocket-Book, Munro and Jamirson, ..... 49
The Calculus for Engineers, Prof. Robt. H. Smith, ..... 45
Measurement Conversions, Prof. Robt. H. Smith, ..... 45

Fourth Edition, Revised, with Numerous Diagrams, Examples, and Tables, and a Chapter on Foundations. In Large 8vo. Cloth. I6s.

## THE DESIGN OF STRUCTURES:

A Practical Treatise on the Building of Bridges, Roofs, \&c.
By S. ANGLIN, C.E.,
Master of Engineering, Royal University of Ireland, late Whitworth Scholar, \&c.
"We can unhesitatingly recommend this work not only to the Student, as the best Text-Book on the subject, but also to the professional engineer as an excerdingly valuable book of reference."-Mechanical World.

In Large Crown 8vo. Handsome Cloth. With 201 Illustrations. 6s. net. AN INTRODUCTION TO THE DESIGN OF BEAMS, GIRDERS, AND COLUMNS IN MACHINES AND STRUCTURES. With Examples in Graphic Statics.
By WILLIAM H. Atherton, M.Sc., M.I. Mech.E.
"A very useful source of information. . . . A work which we commend very highly."-Nature.

Third Edition, Thoroughly Revised. Royal 8vo. With numerous
Illustrations and 13 Lithographic Plates. Handsome Cloth. Price 30 . A PRACTICAL TREATISE ON BRIDGE-CONSTRUCTION :

Being a Text-Book on the Construction of Bridges in Iron and Steel. FOR THE USE OF STUDENTS, DRAUGHTSMEN, AND ENGINEERS.

By T. CLAXTON FIDLER, M. Inst.C.E. Prof. of Engineering, University College, Dundee.


#### Abstract

"The new edition of Mr. Fidler's work will again occupy the same conspicuous pOSITION among professional text-books and treatises as has been accorded to its predecessors. SOUND, SIMPle, AND FUll."-The Engineer.


In Medium 8vo. Pp. 2-xv +248 , fully Illustrated. Price 10s. 6d. net.

## CONSTRUCTIONAL STEELWORK:

Being Notes on the Practical Aspect and the Principles of Design, together with an Account of the Present Methods and Tools of Manufacture.

By A. W. FARNSWORTH, Associate Member of the Institute of Mechanical Engineers.
"A worthy volume, which will be found of much assistance. particular value."-Practical Engineer.

## In Large 8vo. Handsome Cloth, Gilt, Uniform with Stability of Ships and Steel Ships (p. 38). With 34 Folding Plates and 468 Illustrations in the Text. 30s. net. <br> <br> The Principles and Practice of <br> <br> The Principles and Practice of DOCK ENGINEERING.

 DOCK ENGINEERING.}
## By BRYSSON OUNNINGHAM.

GENERAL CONTENTS.
Historical and Discursive. - Dock Design. - Constructive Appliances. -Materials.-Dock and Quay Walls.-Entrance Passages and Lc.cks.Jetties, Wharves, and Piers. - Dock Gates and Caissons.-Transit Sheds and Warehouses. - Dock Bridges. - Graving and Repairing Docks. Working Equipment of Docks. -Index.
"We have never seen a more profusely-illustrated treatise. It is a most important standard work, and should be in the hands of all dock and harbour engineers."-Steamship.
"Will be of the greatest service to the expert as a book of reference."-Engineer.

In Large 8vo. Cloth. With Folding Plates and Numerous Illustrations.

## A COMPANION VOLUME TO "DOCK ENGINEERING."

THE PRINCIPLES AND PRACTICE OF

## HARBOUR ENGINEERING.

By BRYSSON CUNNINGHAM.
Contents. - Introductory. - Harbour Design. - Surveying, Marine and Submarine.-Piling.-Stone, Natural and Artiticial.-Breakwater Design.Breakwater Construction. - Pierheads, Quays, and Landing Stages. Entrance Channels.-Channel Demarcation.-Index.

In Large Crown 8vo. Handsome Cloth. 4s. 6d. net.

# THE THERMO-DYNAMIC PRINCIPLES OF ENGINE DESIGN. 

By LIONEL M. HOBBS,
Engineer-Lieutenant, R.N.; Instructor in Applied Mechanics and Marine Engine Desion at the Royal Naval College, Greenwich.

Contents. - Laws and Principles of Thermo-Dynamics. - Hot-Air Engines.- Gas and Oil Engines.-Refrigerating Machines.-Transmission of Power by Compressed Air. - The Steam Engine. - Unresisted Expansion and Flow through Orifices. - Flow of Gases along Pipes. - Steam Injectors and Ejectors.-Steam Turbines. -Appendices.-Index.
"Serves its purpose admirably . . . should prove of invaluable service . . . well
to-date."-Shipping World. up-tu-date."-Shipping World.

## THE THEORY OF THE STEAM TURBINE.

## A Treatise on the Principles of Construction of the Steam Turbine, with Historical Notes on its Development.

By ALEXANDER JUDE.
Contents.-Fundamental.-Historical Notes on Turbines.-The Velocity of Steam.Types of Steam Turbines.-Practical Turbines.-The Efficiency of Turbines, Type I.Trajectory of the Steam.-Efficiency of Turbines, Types II., III. and IV.-Turbine Vanes.Disc and Vane Friction in Turbines. - Specific Heat of Superheated Steam. - Strength of Rotating Discs.-Governing Steam Turbines.-Steam Consumption of Turbines.-The Whirling of Shafts.-Speed of Turbines.-Index.
"One of the latest text-books : . also one of the best . . . there is absolutely no padding."-Sir William White in the Times Engineering Supplement.

In Large Crown 8vo. Handsome Cloth. With 131 Illustrations. 6s. net. LECTURES ON THE MARINE STEAM TURBINE.

## By Prof. J. HaRVard Biles, M.Inst.N.A., Professor of Naval Architecture in the University of Glasgow.

"This is the best popular work on the marine steam turbine which has yet appeared." Steamship.

## Works by BRYAN DONKIN, M.Inst.C.E., M.Inst.Mech.E., \&e.

Fourth Edition, Revised and Enlarged. With additional Illustrations. Large 8vo, Handsome Cloth. 25s. net.

A TEXT-BOOK ON GAS, OIL, AND AIR ENGINES.

By BRYAN DONKIN, M.Inst.C.E., M.Inst.Mech.E.

Contents.-Part I.-Gas Engines: General Description of Action and Parts.Heat Cycles and Classification of Gas Engines.-History of the Gas Engine.-The Atkinson, Griffin, and Stockport Engines.-The Otto Gas Engine.-Modern British Gas Engines.-Modern French Gas Engines.-German Gas Engines.--Gas Production for Motive Power.-Utilisation of Blast-furnace and Coke-oven Gases for Power.-The Theory of the Gas Engine.-Chemical Composition of Gas in an Engine Cylinder.-Utilisation of Heat in a Gas Engine.-Explosion and Combustion in a Gas Engine.-Part II.Petroleum Engines: The Discovery, Utilisation, and Properties of Oil.-Method of Treating Oil.-Carburators.-Early Oil Engines.-Practical Application of Gas and Oil Engines.-Part III.-Air Engines.-Appendices.-Index.
"The best book now published on Gas, Oil, and Air Engines." - Engineer.

## In Quarto, Handsome Cloth. With Numerous Plates. 25 s.

THE HEAT EFFICIENCY OF STEAM BOILERS (LAND, MARINE, AND LOCOMOTIVE). By BRYAN DONKIN, M.Inst.C.E.
General Contents.-Classification of Different Types of Boilers.-425 Experiments on English and Foreign Boilers with their Heat Efficiencies shown in Fifty Tables.-Fire Grates of Various Types.-Mechanical Stokers.-Combustion of Fuel in Boilers.-Transmission of Heat through Boiler Plates, and their Temperature.-Feed Water Heaters, Superheaters, Feed Pumps, \&c.-Smoke and its Prevention.-Instruments used in Testing Boilers.-Marine and Locomotive Boilers.-Fuel Testing Stations.-Discussion of the Trials and Conclusions.-On the Choice of a Boiler, and Testing of Land, Marine, and Locomotive Boilers.-Appendices.-Bibliography.-I INDEX.
"Probably the most exhaustive resume that has ever been collected. A praotioal Boor by a thoroughly practical man."-Iron and Coal Trades Review.

Fourth Edition, Revised. Pocket-Size, Leather, 12s. 6d.

# BOILERS, MARINE AND LAND: THEIR CONSTRUCTION AND STRENGTH. 

a handbook of Rules, Formule, Tables, \&o., relative to Material, Soantlings, and Pressures, Safety Valtes, Springe, Fittings and Mountings, \&o.

FOR THE USE OF ENGINEERS, SURVEYORS, BOILER-MAKERS, AND STEAM USERS.

By T. W. TRAILL, M. Inst. O. E., F.E.R. N., Late Engineer Surveyor-in-Chief to the Board of Trade.<br>"Contains an Enormods Quantity op Information arrranged in a very convenient form. . . A most Uskpul volume : . . suppiying information to be had nowhere else."-The Engineer.

Fifth Edition. Large Crown 8vo. With numerous Illustrations. 68. net.

## ENGINE-ROOM PRACTICE:

A Handbook for Engineers and Officers in the Royal Navy and Mercantile Marine, including the Management of the Main and Auxiliary Engines on Board Ship.

## By JOHN G. LIVERSIDGE, R.N., A.M.I.C.E.


#### Abstract

Contents.-General Description of Marine Machinery.-The Conditions of Service aud Duties of Engineers of the Royal Navy. - Entry and Conditions of Service of Engineers of the Leading S.S. Companies.-Raising Steam - Duties of a Steaming Watch on Engines and Boilers.-Shutting off Steam.-Harbour Duties and Watches.-Adjustments and Repairs of Engines.-Preservation and Repairs of "Tank" Boilers. - The Hull and its Fittings.-Oleaning and Painting Machinery.-Reciprocating Pumps, Feed Heaters, and Automatic Feed-Water Regulators. - Evaporators. - Steam Boats. - Electric Light Machinery.-Hydraulic Machinery.-Air-Compressing Pumps.-Refrigerating Machines. -Machinery of Destroyers. - The Management of Water-Tube Boilers.-Regulations for Entry of Assistant Engineers, R.N.-Questions given in Examinations for Promotion of Engineers, R.N.-Regulations respecting Board of Trade Examinations for Engineers, \&c. "This very useful book. illustrations are of great importance in a work of this kind, and it is satisfactory to find that special attention has been given in this respect."-Engineers' Gazette.


Fifth Edition, Thoroughly Revised and Greatly Enlarged. With Numerous Illustrations. Price 10s. 6d.

## VALVES AND VALVE-GEARING: <br> A Practical Text-book for the use of Engineers, Draughtsmen, and Students. <br> By CHARLES HURST, Practical Draughtsman. <br> Part I.-Steam Engine Valves. $\mid$ Part III.-Air Compressor Valves and <br> Part II.-Gas Engine Valves and Gears. <br> Part IV.-Pump Valves. <br> "Mb. Hubst's valvbs and valvb-gbaring will prove a very valuable aid, and tend to the production of Engines of scibntipic dbsign and bconomical wobking. . . . Will be largely sought after by Students and Designers."-Marine Engineer. <br> "As a practical treatise on the subject, the book stands without a rival."- Mechanical World.

Hints on Steam Engine Design and Construction. By Charles Hurst, "Author of Valves and Valve Gearing." Second Edition, Revised. In Paper Boards, 8vo., Cloth Back. Illustrated. Price ls. 6 d . net.
Contents.-I. Steam Pipes.-II. Valves.-1II. Oylinders.-IV. Air Pumps and Condensers. - V. Motion Work.-VI. Crank Shafts and Pedestals.-VII. Valve Gear.-VIII. Lubrication.-IX. Miscellaneous Details -Index.
"A handy volume which every practicul young engineer should possess."-The Model Engineer.

LONDON: CHARLES GRIFFIN \& CO., LIMITED, EXETER STREET, STRAND.

## Second Edition, Revised. With numerous Plates reduced rom Working Drawings and 280 Illustrations in the Text. 2ls.

# a manual of LOCOMOTIVE ENGINEERING: 

> A Practical Text-Book for the Use of Engine Builders, Designers and Draughtsmen, Railway Engineers, and Students.

## By WILLIAM FRANK PETTIGREW, M.Inst.C.E. With a Section on American and Continental Engines.

 By ALBERT F. RAVENSHEAR, B.Sc., Of His Majesty's Patent Office.
#### Abstract

Contents, - Historical Introduction, 1763-1863. - Modern Locomotives: Simple, Modern Locomotives: Compound. Primary Consideration in Locomotive Design. Cylinders, Steam Chests, and Stuffing Boxes.-Pistons, Piston Rods, Crossheads, and Slide Bars.-Connecting and Coupling Rods.-Wheels and Axles, Axle Boxes, Hornblocks, and Bearing Springs.-Balancing.-Valve Gear.-Slide Valves and Valve Gear Details.F'raming, Bogies and Axle Trucks, Radial Axle Boxes.-Boilers.-Smokebox. Blast Pipe, Firebox Fittings.-Boiler Mountings.-Tenders. Railway Brakes - Lubrication.-Consumption of Fuel, Evaporation and Engine Effliency.-American Locomotives.-Continental Locomotives.-Repairs, Running, Inspection, and Renewa's.-Three Appendices, -Index. "The work contains all that can be learnt from a book upon such a sabject. It will at once rank as the standard work upon this important subject."-Railvay Magazine.


In Large 8vo. Fully Illustrated. 8s. 6d. net.

## LOCOMOTIVE COMPOUNDING AND SUPERHEATING.

## By J. F. GAIRNS.

Contents.-Introductory.-Compounding and Superheating for Locomotives.-A Classification of Compound Systems for Locomotives.-The History and Development of the Compound Locomotive. - Two-Cylinder Non-Automatic Systems. - Two-Cylinder Automatic Systems.-Other Two-Cylinder Systems.-Three-Cylinder Systems.-FourCylinder Tandem Systems.-Four-Cylinder Two-Crank Systems (other than Tandem). -Four-Cylinder Balanced Systems.-Four-Cylinder Divided and Balanced Systems.Articulated Compound Engines.-Triple-Expansion Locomotives.-Compound Rack Locomotives. - Concluding Remarks Concerning Compound Locomotives.-The Use of Superheated Steam for Locomotives.-INDEX.
"A welcome addition to the library of the railway engineer."-Engineering Times.
In Large 8vo. Handsome Cloth. With Plates and Illustrations. 168.

##  AT HOME AND ABROAD.

## By WILLIAM HENRY OOLE, M.Inst.O.E., Late Depaty-Manager, North-Western Railway, India.

Contents.-Discussion of the Term "Light Railways."-English Railways, Rates, and Farmers. - Light Railways in Belgium, France, Italy, other European Countries, America and the Colonies, India, Ireland.--Road Transport as an alternative.-The Light Railways Act, 1896. -The Question of Gauge.-Construction and Working. -Locomotives and Rolling-Stock. - Light Railways in England, Scotland, and Wales.-Appendices and Index.
"Will remain, for some time yet a Standard Work in everything relating to Light Railways."-Engineer.
"The whole subject is exhaugtively and practically considered. The work can be cordially recommended as INDISPENSABLE to those whose duty it is to become requainted with one of the prime necessities of the immediate future."-Railway Official Gazette.

## In Crown 8vo, Handsome Cloth. Fully Illustrated. PRACTICAL CALCULATIONS FOR ENGINEERS.

By CHARLES E. LARARD,

A.M.Inst.C.E., M.I.Mech.E., Wh.Exh., Head of the Mechanical Engineering Department at the Northampton Institute, London, E.C.

> And H. A. GOLDING, A.M.I.Mech.E.

Contents.-Section I.-Contracted Methods of Calculation.-Technical Mensura-tion.-Practical Calculation by Logarithms.-The Slide Rule and its Applications.Squared Paper and its Uses. Section II.-Pulleys and Wheels in Train.-Speed Ratios and Practical Examples.-Principle of Moments Applied to Practical Problems. - Work and Power.-Energy and Speed Fluctuations.-Transmission of Work through Machines. -Friction and Efficiency.-Transmission of Power.-Shafting.-Motion on a Circle.Momentum, Acceleration, and Force Action. Section III.-Temperature Scales.-Units of Heat.-Specific Heat.-Heat and Work.-Heat Value of Fuels.-Heat Losses in Engine and Boiler Plant.-Properties of Steam.-Moisture and Dryness Fraction.-Steam and Fuel Calculations.-Boiler Efficiency.-Size of Boiler.-Engine Calculations.-Power, Indicated and Brake.-Calculations for Dimensions.-Steam Consumption and Willans Law.-Efficiencies, Comparative Costs of Power Production.-Commercial Efficiency. SECTION IV.-The Commercial side of Engineering.-Calculation of Weights.-Division of Costs, Material and Labour, Shop Charges and Establishment Charges.-Estimates.-Profit.-Use of Squared Paper in the Estimating Department and to the General Management.

Sixth Edition. Folio, strongly half-bound, 21s,

## TRAYERSE TABLES:

Computed to Four Places of Decimals for every Minute of Angle up to 100 of Distance.
For the Use of Surveyors and Engineers.

# By RICHARD LLOYD GURDEN, Authorised Surveyor for the Governments of New south Wales and Victoria. 

> *** Published with the Concurrence of the Surveyors-General for New South Wales and Victoria.


#### Abstract

" Those who have experience in exact Survey-work will best know how to appreciate the enormous amount of labour represented by this valuable book. The computations enable the user to ascertain the sines and cosines for a distance of twelve miles to within half an inch, and this by refrrence to but One Table, in place ot the usual Fifteen minute computations required. This alone is evidence of the assistance which the Tables ensure to every user, and as every Surveyor in active practice has felt the want of such assistance few knowing of their publication will remain withot t them."


Strongly Bound in Super Royal 8vo. Cloth Boards. 78. bd. net.

## BONUS TABLES:

## For Calculating Wages on the Bonus or Premium Systems.

 For Engineering, Technical and Allied Trades.By HENRY A. GOLDING, A.M.Inst.M.E.,
Technical Assistant to Messrs. Bryan Donkin and Clench, Ltd., and Assistant Lecturer in Mechanical Engineering at the Northampton Institute, London, E.C.
"Cannot fail to prove practically serviceable to those for whom they have been designed."-Scotsman.

# Lubrication \& Lubricants: 

A Treatise on the Theory and Practice of Lubrication, and on the Nature, Properties, and Testing of Lubricants.

BY
LEONARD ARCHBUTTT, F.I.O., F.C.S., Chemist to the Mid. Ry. Oo.

AND
R. M. DEELEY, M.I.Mech.E., F.G.S. Chief Loco. Super., Mid. Ry. Co.

Contents.-I. Friction of Solids.-II. Liquid Friction or Viscosity, and Plastic Friction.-III. Superficial Tension.-IV. The Theory of Lubrication.-V. Lubricants, their Sources, Preparation, and Properties.-VI. Physical Properties and Methods of Examination of Lubricants.-VII. Chemical Properties and Methods of Examination of Lubricants.-VIII. The Systematic Testing of Lubricants by Physical and Chemical Methods.-IX. The Mechanical Testing of Lubricants.-X. The Design and Lubrication of Bearings.-XI. The Lubrication of Machinery.-InDEX.
"Contains practically ALL THAT IS KNOWN on the subject. Deserves the careful sttention of all Engineers."-Railway Official Gazette.

Fourth Edition. Very fully Illustrated. Cloth, 4s. 6d.

## STEAM - BOILERS: THEIR DEFECTS, MANAGEMENT, AND CONSTRUCTION,

 By R. D. M U N R O, Chief Engineer of the Scottish Boiler Insurance and Engine Inspection Company,"A valuable companion for workmen and engıneers engaged about Steam Boilers, ought to be carefully studied, and always at hand."-Coll. Guardian.

## By the same Author.

## KITCHEN BOILER EXPLOSIONS: Why

 they Occur, and How to Prevent their Occurrence. A Practical Handbook based on Actual Experiment. With Diagram and Coloured Plate. 3s.In Crown 8vo, Cloth. Fully Illustrated. 5s. net.

## EMERY GRINDING MACHINERY.

A Text-Book of Workshop Practice in General Tool Grinding, and the Design, Construction, and Application of the Machines Employed. By R. B. HODGSON, A.M.Inst. Mech.E.
"Eminently practical . . . cannot fail to attract the notice of the users of this class of machinery, and to meet with careful perusal."-Chem. Trade Journal.

Fifti Edition. In Two Parts, Published Separately. A TEXT-BOOK OF Engineering Drawing and Design. By SIDNEY H. WELLS, Wh.Sc., A.M.I.C.E., A.M.I.Mech.E. Vol. I.-Practical Geometry, Plane, and Solid. 4s. 6d. Vol. II.-Machine and Engine Drawing and Design. 4s. 6d. With many Illustrations, specially prepared for the Work, and numerous Examples, for the Use of Students in Technacal Schools and Colleges.

[^10]In Three Parts. Crown 8vo, Handsome Cloth. Very Fully Illustrated. mOTOR-CAR MECHANISM AND MANAGEMENT.

By W. POYNTER ADAMS, M.Inst.E.E.
PART I.-THE PETROL CAR. 5s. net.
Second Edition. With important new Appendix, illustrating and defining parts of actual cars in use.
Contents.-Section I.-The Mechanism of the Petrol Car.The Engine. -The Engine Accessories. - Electrical Ignition and Accessories. -Multiple Cylinder Engines.-The Petrol. - The Chassis and Driving Gear. -Section II.-The Management of the Petrol Car. - The Engine.The Engine Accessories.-Electrical Ignition.-The Chassis and Driving Gear. -General Management.-Appendix. -Glossary. -Index.
"Should be carefully studied by those who have anything to do with motors."-Automobile and Carriage Builders' Tournal.
** PART II. The Electrical Car, and PART III. The Steam Car will be issued shortly.

In Large 8vo. Handsome Cloth. Very Fully Illustrated. 18s. net. A MANUAL OF
PETROL MOTORS AND MOTOR-CARS.
Comprising the Designing, Construction, and Working of Petrol Motors. By F. STRICKLAND.
General Contents.-Part I. : Engines.-Historical.-Power Required.-Geueral Arrangement of Engines.-Ignition. - Carburettors.-Cylinders, Pistons, Valves, \&c.Crank Shafts, Crank Chambers, Cams, Runners, Guides, \&c. - Pumps. - Flywheels. Pipe Arrangements.-Silencers.-Engine Control, Balancing.-Motor Cycle Engines.Marine Motors.-Two-Cycle Motors.-Paraffin Carburettors.-Gas Producers. Part II. : Cars.-General Arrangements. - Clutches. - Transmission. - Differential Gears. Universal Joints.-Axles. - Springs. - Radius Rods. - Brakes. - Wheels. - Frames. Steering Gear. - Radiator. - Steps, Mudguards, Bonnets, \&c. - Lubrication. - Ball Bearings.-Bodies.-Factors of Safety.-Calculations of Stresses.-Special Change Speed Gears.-Special Cars.-Commercial Vehicles.-Racing Cars.-Index.
"Thoroughly practical and scientific. . . . We have pleasure in recommending it to all, -Mechanical Engineer.

In Large 8vo. Cloth. Fully Illustrated. 10s. 6d. net. THE PROBLEM OF FLIGHT

By HERBERT CHATLEY, B. Sc. (Eng.), London, Lecturer in Applied Mechanics, Portsmouth T'echnical Institute.
Contents.-The Problem of Flight. - The Helix. - The Aëroplane. - The Aviplane. Dirigible Baloons.-Form and Fittings of the Airship.-Appendices (The Possibility of Flight, Weight, A Flexible Wing, Theory of Balance, Bibliography).-Index.

In Crown 8vo, Handsome Cloth. With 105 Illustrations. MECHANICAL ENGINEERING FOR BEGINNERS.

By R. S. M ${ }^{c}$ LAREN.

Contents.-Materials.-Bolts and Nuts, Studs, Set Screws.-Boilers.-Steam Raising Accessories.-Steam Pipes and Valves.-The Steam Engine.-Power Transmission.Condensing Plant.-The Steam Turbine.-Electricity.-Hydraulic Machinery.-Gas and Oil Engines.-Strength of Beams, and Useful Information.-Index.

LONDON: CHARLES GRIFFIN \& CO., LIMITED, EXETER STREET, STRAN\&.

WORKS BY<br>ANDREW JAMIESON, M.Inst.C.E., M.I.E.E., F.R.S.E.,<br>Formerly Professor of Electrical En $n_{g}$ ineering, The Glas. and W. of Scot. Tech. Coll.

# PROFESSOR JAMIESON'S ADVANCED TEXT-BOOKS. 

In Large Crown 8vo. Fully Illustrated.
STEAM AND STEAM-ENGINES, INCLUDING TURBINES AND BUILERS. For the Use of Engineers and for Students preparing for Examinations With 800 pp ., over 400 Illustrations, II Plates, many B. of E., C. and G., Questions and Answers, and all Inst. C.E. Exams. on Theory of Heat Engines. Fifteenth Edition, Revised. ios. 6d.
"The Brst Book yet published for the use of Students."-Engineer.
APPLIED MECHANICS \& MECHANICAL ENGINEERING. Including All the Inst. C.E. Exams. in (I) Applied Mechanics; (2) Strength and Elasticity of Materials; (3a) Theory of Structures; (ii) Theory of Machines; Hydraulics. Also B. of E. ; C. and G. Questions. Vol. I.-Comprising 568 pages, 300 Illustrations, and Questions: Part I., The Principle of Work and its Applications; Part II.: Friction, Lubrication of Bearings, \&c. ; Different kinds of Gearing and their Applications to Workshop Tools, \&c. Fifth Edition. 8s. 6d.
"Fully maintains the reputation of the Author."-Pract. Engineer.
Vol. II.-Comprising Parts III. to VI., with over 800 pages, 37 Illustrations; Motion and Energy, Theory of Structures or Graphic Statics; Strength and Elasticity of Materials ; Hydraulics and Hydraulic Machinery. Fifth Edition. 12s. 6d.
"Well and lucidly written."-The Engineer.
** Each of the above volumes is complete in itself, and sold separately.

## PROFESSOR JAMIESON'S INTRODUCTORY MANUALS

 Crowon 8vo. With Illustrations and Examination Papers.STEAM AND THE STEAM-ENGINE (Elementary Manual of). For First-Year Students, forming an Introduction to the Author's larger Work. Eleventh Edition, Revised and Enlarged. 3/6. " Should be in the hands of Every engineering apprentice."-Practical Engerneer.

## MAGNETISM AND ELECTRICITY (Practical Elementary

 Manual of). For First-Year Students. With stud Inst.C.E. and B. of E. Exam. Questions. Seventh Edition, Revised and Enlarged. 3/6. "A thoroughly trustworthy Text-book. Practical and clear."-Naiure."The work has VERY HIGH QUALITIRS, which may be condensed into the one word 'CLEAR." "-Science and Art.

A POCKET-BOOK of ELECTRICAL RULES and TABLES.
For the Use of Electricians and Engineers. By John Munro, C.E., and Prof. Jamieson. Pocket Size. Leather, 8s. 6d. Eighteenth Edrtion.
[See p. 49.
LONDON : CHARLES GRIFFIN \& CO, LIMITED, EXETER STREET, STRAND.

## WORKS BY W. J. MACQUORN RANKINE, LL.D., F.R.S.

Thoroughly Revised by W. J. MILLAR, C.E.


#### Abstract

A MANUAL OF APPLIED MECHANICS: Comprising the Principles of Statics and Cinematics, and Theory of Structures, Mechanism, and Machines. With Numerous Diagrams. Crown 8vo, Cloth. Seventeenth Edition. 12s. 6d.


A MANUAL OF CIVIL ENGINEERING: Comprising Engineering Surveys, Earthwork, Foundations, Masonry, Carpentry, Metal Work, Roads, Railways, Canals, Rivers, Waterworks, Harbours, \&c. With Numerous Tables and Illustrations. Crown 8vo, Cloth. Twenty-Third Edition. 16s.

## A MANUAL OF MACHINERY AND MILLWORK: Com-

 prising the Geometry, Motions, Work, Strength, Construction, and Objects of Machines, \&c. With nearly 300 Illustrations. Crown 8vo, Cloth. Seventh Edition. 12s. 6d.> A MANUAL OF THE STEAM-ENGINE AND OTHER PRIME MOVERS. With a Section on Gas, Oil, and Air Engines, by Bryan Donkin, M.Inst.C.E. With Folding Plates and Numerous Illustrations. Crown 8vo, Cloth. Sixteenth Edition 12s. 6d.

USEFUL RULES AND TABLES: For Architects, Builders, Engineers, Founders, Mechanics, Shipbuilders, Surveyors, \&c. With Appendix for the use of Eleotrical Engineeri. By Professor Jamieson, M.Inst. U.E., M.I.E.E. Seventh Edition. 10s. 6d.

A MECHANICAL TEXT-BOOK: A Practical and Simple Introduction to the Study of Mechanics. By Professor Rankine and E. F. Bamber, C.E. With Numerous Illustrations. Crown 8vo, Cloth. Fifth Edition. 9s.
** The "Meqhanidal Text-Boor" was designed by Professor Rankine as an Intr" dUction to the above Series of Manuals.

MISCELLANEOUS SCIENTIFIC PAPERS. Part I. Temperature, Elasticity, and Expansion of Vapours, Liquids, and Solids. Part II. Energy and its Transformations. Part III. Wave-Forms, Propulsion of Vessels, \&o. With Memoir by Professor Tait, M.A. With fine Portrait on Steel, Plates, and Diagrams. Royal 8vo. Cloth. 31s. 6d.

[^11]Third Edition, Thoroughly Revised and Enlarged. With 60 Plates and Numerous Illustrations. Handsome Cloth. 34s.

# HYDRAULIC POWER <br> AND <br> HYDRAULIC MACHINERY. 

BY
HENRY ROBINSON, M. INST. C.E., F.G.S.,
frillow op king's collegge, London; pror. mmertus of civil bnginebring, KING'S COLLEGR, RTC., ETC.
Contents - Discharge through Orifices.-Flow of Water through Pipes.-Accumulators. - Presses and Lifts.-Hoists.-Rams.-Hydraulic Engines.-Pumping Engines.-Capstans. -Traversers. - Jacks. - Weighing Machines. - Riveters and Shop Tools. - Punching, Shearing, and Flanging Machines. - Cranes. - Coal Discharging Machines. - Drills and Cutters.- Pile Drivers, Excavators, \&c.-Hydraulic Machinery applied to Bridges, Dock Gates, Wheels and Turbines.-Shields. - Various Systems and Power Installations Meters, \&c.-Index.
"The standard work on the application of water power."-Cassier's Magazine.

Second Edition, Greatly Enlarged. With Frontispiece, several
Plates, and over 250 Illustrations. 21s. net.

# THE PRINCIPLES AND CONSTRUCTION OR <br> PUMPING MACHINERY (STEAM AND WATER PRESSURE). 

With Practical Illustrations of Engines and Pomps applied to Mining, Town Water Supply, Drainage of Lands, \&c., also Economy and Efficiency Trials of Pumping Machinery.

## By HENRY DAVEY,

Member of the Institution of Civil Engineers, Member of the Institution of Mechanical Engineers, F.G.S., \&c.
Contents - Early History of Pumping Engines-Steam Pumping EnginesPumps and Pump Valves-General Principles of Non-Rotative Pumping Engines-The Cornish Engine, Simple and Compound-Types of Mining Engines-Pit Work-Shaft Sinking-Hydraulic Transmission of Power in Mines-Electric Transmission of Power-Valve Gears of Pumping Engines -Water Pressure Pumping Engines - Water Works Engines - Pumping Engine Economy and Trials of Pumping Machinery-Centrifugal and other Low-Lift Pumps-Hydraulic Rams, Pumping Mains, \&c.-Index.

[^12]At Press. In Large 8vo. Handsome Cloth. Profusely Illustrated. In Two Volumes, Each Complete in itself, and Sold Separately.

## TIEE DESIGM

AND

## CONSTRUCTION OF SHIPS.

By JOHN HARVARD BILES, M.Inst.N.A., Professor of Naval Architecture in Glasgow University.


#### Abstract

Contents of Volume I.-Part I.: General Considerations.-Methods of Determination of the Volume and Centre of Gravity of a known Solid. - Graphic Rules for Integration.-Volumes and Centre of Gravity of Volumes.-Delineation and Descriptive Geometry of a Ship's Form.-Description and Instances of Ship's Forms.--Description of Types of Ships. Part II. : Calculation of Displacement, Centre of Buoyancy and Areas.-Metacentres.-Trim.-Coefficients and Standardising.-Results of Ship Calcula-tions.-Instruments Used to Determine Areas, Moments, and Moments of Inertia of Plane Curves.-Cargo Capacities,-Effects on Draught, Trim, and Initial Stability due to Flooding Compartments. - Tonnage. - Freeboard.-Launching.-Application of the Integraph to Ship Calculations.-Straining due to Unequal Longitudinal Distribution of Weight and Buoyancy.-Consideration of Stresses in a Girder.-Application of Stress Formulæ to the Section of a Ship.-Shearing Forces and Bending Moments on a Ship amongst Waves.-Stresses on the Structure when Inclined to the Upright or to the Line of Advance of the Waves. - Distribution of Pressure on the Keel Blocks of a Vessel in Dry Dock.-Consideration of Compression in Ship Structure.


BY PROFESSOR BILES.

# Lectures on the marine steam turbine. 

With 181 IIIustrations. Price 6s. net.
See page 28.

Royal 8vo, Handsome Cloth. With numeroas Illustrations and Tables. 258.

## THE STABILITY OF SHIPS.

BY

SIR EDWARD J. REED, K.C.B., F.R.S., M.P.,
TNIGHT OF THE IMPERIAL ORDERS OF ST. STANILAUS OF RUSSIA; FRANCIS JOSEPH OF AUSTRIA; MEDJIDIE OF TURKEY; AND RISING SUN OF JAPAN; VICEPRESIDENT OF THE INSTITUTION OF NAVAL ARCHITECTS.

[^13]\[

$$
\begin{gathered}
\text { WORKS BY THOMAS WALTON, } \\
\text { NAVAL ARCHITECT. }
\end{gathered}
$$
\]

Third Edition. Illustrated with Plates, Numerous Diagrams, and Figures in the Text. 18s. net.

## STEELSHIPS풀

THEIR CONSTRUCTION AND MAINTENANCE.
A Manual for Shipbuilders, Ship Superintendents, Students, and Marine Engineers.
By THOMAS WALTON, Naval Architect, author of "know your own ship."
Contents.-I. Manufacture of Cast Iron, Wrought Iron, and Steel.-Composition of Iron and Steel, Quality, Strength, Tests, \&c. II. Classification of Steel Ships. III. Considerations in making choice of Type of Vessel.-Framing of Ships. IV. Strains experienced by Ships.-Methods of Computing and Comparing Strengths of Ships. V. Construction of Ships.-Alternative Modes of Construction.-Types of Vessels.-Turret, Self Trimming, and Trunk Steamers, \&c.-Rivets and Rivetting, Workmanship. VI. Pumping Arrangements. VII. Maintenance.-Prevention of Deterioration in the Hulls of Ships.-Cement, Paint, \&c.-Index.
"So thorough and well written is every chapter in the book that it is dilicult to select any of them as being worthy of exceptional praise. Altogether, the work is excellent, and will prove of great value to those for whom it is intended."-The Engineer.

In Large 8vo. Handsome Cloth. With 236 Pages, 40 Folding and 9 other Plates, and very numerous Illustrations in the Text. 7s. 6d. net.

## PRESENT-DAY SHIPBUILDING.

For Shipyard Students, Ships' Officers, and Engineers.
By THOS. WALTON.
General Contents.-Classification. -Materials used in Shipbuilding.Alternative Modes of Construction.-Details of Construction.-Framing, Plating, Rivetting, Stem Frames, Twin-Screw Arrangements, Water Ballast Arrangements, Loading and Discharging Gear, \&c.-Types of Vessels, including Atlantic Liners, Cargo Steamers, Oil carrying Steamers, Turret and other Self Trimming Steamers, \&c. -Index.

Ninth Edition. Illustrated. Handsome Cloth, Crown 8vo. 78.6d.
The Chapters on Tonnage and Freeboard have been brought thoroughly up to date, and embody the latest (1906) Board of Trade Regulations on these subjects.

## KNOW YOUR OWN SHIP.


#### Abstract

By THomas WaLTon, Naval Architect. Specially arranged to suit the requirements of Ships' Officers, Shipowners Superintendents, Draughtsmen, Engineers, and Others,

^[ Contents. - Displacement and Deadweight. - Moments. - Buoyancy. - Strain. Structure. - Stability. - Rolling. - Ballasting. - Loading.-Shifting Cargoes.-Effect of Admission of Water into Ship.-Trim Tonnage.-Freeboard (Load-line).-Calculations.Set of Calculations from Actual Drawings. - Index. "The work is of the highest value, and all who go down to the sea in ships should make themselves acquainted with it."-Shipping World (on the new edition). ]


## GRIFFIN'S NAUTICAL SERIES:

Edited by EDW. BLACKMORE,<br>Master Mariner, First Class Trinity House Certificate, Assoc. Inst. N.A. ; and Written, mainly, by Saflors for Sailors.

[^15]The British Mercantile Marine : An Historical Sketch of its Rise and Development. By the Editor, Capt. Blágmore. 3s. 6d.
"Captain Blackmore s SPLENDID Book . . . contains paragraphs on every point of interest to the Merchant Marine. The 243 pages of this book are THe most ValuABLE to the sea captain that have EVER been Complied."-Merchant Service Review.

Elementary Seamanship. By D. Wilson-Barker, Master Mariner, F.R.S.E., F.R.G.S. With numerous Plates, two in Colours, and Frontispiece. Fourth Edition, Thoroughly Revised. With additional Illustrations. 6s.
"This admirable manual, by Capt. Wilson Barker, of the 'Worcester,' seems
to us Perfeotly designed."-Athenoeum.
Know Your 0wn Ship: A Simple Explanation of the Stability, Construction, Tonnage, and Freeboard of Ships. By Thos. Walton, Naval Architect. Ninth Edition. 7s. 6d.
"Mr. Walton's book will be found VERY USEFUL."-The Engineer.
Navigation : Theoretical and Practical. By D. Wilson-Barker
and Whliam allingham. Second Edition, Revised. 3s. 6d.
"Precisely the kind of work required for the New Certificates of competency. Candidates will find it invaluable."-Dundee Advertiser.

Marine Meteorology : For Officers of the Merchant Navy. By Wrlifam Allingham, First Class Honours, Navigation, Science and Art Department. With Illustrations and Maps, and facsimile reproduction of $\log$ page. 78. 6d. "Quite the Best publication on this subject."-Shipping Gazette.

Latitude and Longitude: How to find them. By W. J. Millar,
C.E. Second Edition, Revised. 2s.
"Cannot but prove an acquisition to those studying Navigation."-Marine Engineer.
Practical Mechanies: Applied to the requirements of the Sailor. By Thos. Mackenzie, Master Mariner, F.R.A.S. Second Edition, Revised. 38. 6d. "WELL WORTH the money . exceedingly helppul."-Shipping World.

Trigonometry : For the Young Sailor, \&c. By Rich. C. Buck, of the Thames Nautical Training College, H.M.S. "Worcester." Third Edition, Revised. Price 3s. 6d.
"This eminently practical and reliable volume."-Schoolmaster.
Practical Algebra. By Rich. C. Buck. Companion Volume to the above, for Sailors and others. SECond Edition, Revised. Price 3s. 6d.
"It is JUST THE BOOK for the young sailor mindful of progress."-Nautical Magazine.
The Legal Duties of Shipmasters. By Breediot Wm. Ginsburg, M.A., LL.D., of the Inner Temple and Northern Circuit; Barrister-at-Law. SECOND Edition, Thoroughly Revised and Enlarged. Pricê 4s. 6d.
"INVALU ABLE to masters. . . We can fully recommend it '-Shipping Gazette.
A Medical and Surgical Help for Shipmasters. Including First Aid at Sea. By WM. JOHNSON SMITH, F.R.C.S., Principal Medical Officer, Seamen's Hospital, Greenwich. Third Edition, Thoroughly Revised. 6s. "SOUND, JUDICIOUS, REALLY HELPFUL."-The Lancet.
LONDON: CHARLES GRIFFIN \& CO., LIMITED, EXETER STREET, STRAND.

# GRIFFIN'S NAUTICAL SERIES. 

Introductory Volume. Price 38. 6d.

# 下玒 <br> British Mercantile Marine. 

## By EDWARD BLACKMORE,

MASTER MARINER; ASSOCIATE OF THE INSTITUTION OF NAVAL ARCHITECTS; MEMBER OF THE INSTITUTION OF ENGINEERS AND SHIPBUILDERS IN SCOTLAND: EDITOR OF GRIFFIN'S "NAUTICAL SERIES."

General Contents.-Historical: From Early Times to 1486-Prugress ander Henry VIII.-To Death of Mary-During Elizabeth's Reign-Up to the Reign of William III.-The 18th and 19th Centuries-Institution of Examinations - Rise and Progress of Steam Propulsion - Development of Free Trade-Shipping Legislation, 1862 to 1875-"Locksley Hall" CaseShipmasters' Societies-Loading of Ships-Shipping Legislation, 1884 to 1894Statistics of Shipping. The Personnel : Shipowners-Officers-MarinersDuties and Present Position. Education: A Seaman's Education: what it should be-Present Means of Education-Hints. Discipline and Duty-Postscript-The Serious Decrease in the Number of British Seamen, a Matter demanding the Attention of the Nation.
"Interesting and Instructive . . . may be read with profit and enjoyment." Glasgow Herald.
"Every branch of the subject is dealt with in a way which shows that the writer 'knows the ropes' familiarly."-Scotsman.
"This admirable book . TEEMs with useful information-Should be in the hands of every Sailor."-Western Morning News.

Fourth Edition, Thoroughly Revised. With Additional Illustrations. Price 6s.

## A MEXUEK OE

# ELEMENTARY SEAMANSHIP: 

BY
D. WILSON-BARKER, Master Mariner; F.R.S.E., F.R.G.S., \&o., \&o. younger brother of the trinity house.
With Frontispiece, Numerous Plates (Two in Colours), and Illustrations in the Text.
General Contents.-The Building of a Ship; Parts of Hull, Masts, \&c.- Ropes, Knots, Splicing, \&c. - Gear, Lead and Log, \&c. - Rigging, Anchors - Sailmaking - The Sails, \&c. - Handling of Boats under Sail Signals and Signalling-Rule of the Road-Keeping and Relieving WatchPoints of Etiquette-Glossary of Sea Terms and Phrases-Index.

> ***The volume contains the NEW RULES OF THE ROAD.
"This admrable mandal by Capt. Wilson-Baricer of the 'Worcester,' seems to ue perfectiv designed, and holds its place excellently in 'Griffis's Nautical Series. Although intended for those who are to become Officers of the Merchant Navy, it will be tound useful by all yachtsmen."-Athenæum.
*** For complete List of Griffin's Nautioal Serirs, see p. 39.
LONDON : CHARLES CRIFFIN \& CO., LIMITED, EXETER STREET, STRAND.

## GRIFFIN'S NAUTICAL SERIES.

Second Edition, Revised and Illustrated. Price 3s. 6d.

## NAVIGATION: PRECTICAL AND THEORETICAL.

By DAVID WILSON-BARKER, R.N.R., F.R.S.E., \&c., \&o.,

## and

WILLIAM ALLINGHAM, pirst-olass honours, natiaation, sotenor and art departigent.

## Wuitb Wumerous Fllustrations and Examination Questions.

General Contents.-Definitions-Latitude and Longitude-Instrumente of Navigation-Correction of Courses-Plane Sailing-Traverse Sailing-Day's Work - Parallel Sailing - Middle Latitude Sailing - Mercator's ChartMercator Sailing-Current Sailing-Position by Bearings-Great Circle Sailing -The Tides-Questions-Appendix: Compass Error-Numerous Useful Hints \&c.-Index.
"Precisely the kind of work required for the New Certiflcates of competency in grades from Second Mate to extra Master. . . . Candidates will find it invaluable."-Dunder Advertiser.
"A captral little booz . apecially adapted to the New Examinations. The Authors are Capt. Wilson-Barker (Captain-Superintendent of the Nautical Oollege. H.M.8. ' Worcester,' who has had great experience in the highest problems of Navigation), and Mr. Allingham, a well-known writer on the Science of Navigation and Nautical Astronomy." -Shipping World.

Handsome Cloth. Fully Illustrated. Price 7s. 6d.

## MARINE METEOROLOGY,

 FOR OFFICERS OF THE MERCHANT NAVY.By WILLIAM ALLINGHAM, Joint Author of "Navigation, Theoretical and Practical."

With numerous Plates, Maps, Diagrams, and Illustrations, and a facsimile Reproduction of a Page from an actual Meteorological Log-Book.

## SUMMARY OF CONTENTS.


#### Abstract

Introductory.-Instruments Used at Sea for Meteorological Purposes.-Meteorological Log-Books.-Atmospheric Pressure.-Air Temperatures.-Sea Temperatures.-Winds.-Wind Force Scales.-History of the Law of Storms.-Hurricanes, Seasons, and Storm Tracks.-Solution of the Cyclone Problem.-Ocean Currents.-Icebergs.-Synchronous Charts.-Dew, Mists, Fogs, and Haze.-Clouds.-Rain, Snow, and Hail.Mirage, Rainbows, Coronas, Halos, and Meteors.-Lightning, Corposants, and Auroras.-Qurstions.-Appendix.-Index. "Quite the best publication, AND certainly the most interesting, on this subject ever presented to Nautical men."-Shipping Gazette.


$$
{ }^{*}{ }_{*}^{*} \text { For Complete List of Griffin's Nautical Series, see p. } 39 .
$$

## GRIFFIN'S NAUTICAL SERIES.

Second Edition, Revised. With Numerous Illustrations. Price 3s. 6d.

## Practical Mechanics:

Applied to the Requirements of the Sailor.

> By THOS. MACKENZIE, Master Mariner, F.R.A.S.

Gmereral Contents.-Resolution and Composition of Forces-Work done by Machines and Living Agents-The Mechanical Powers: The Lever; Derricks as Bent Levers-The Wheel and Axle: Windlass; Ship's Capstan; Crab Winch-Tackles: the "Old Man"-The Inclined Plane; the NcrewThe Centre of Gravity of a Ship and Cargo - Relative Strength of Rope : Steel Wire, Manilla, Hemp, Coir-Derricks and Shears-Calculation of the Cross-breaking Strain of Fir Spar-Centre of Effort of Sails-Hydrostatics: the Diving-bell ; Stability of Floating Bodies ; the Ship's Pump, \&c.
"This excellent book . . . contains a large amount of information." -Nature.
"Well worth the money . . . will be found Exoeedingly helpful."shipping World.
't No SHips' Officers' bookcase will henceforth be complete without Captain Mackenzie's 'Practical Mechanics.' Notwithstanding my many years' experience at sea, it has told me how much more there is to acquire."(Letter to the Publishers from a Master Mariner).
"I must express my thanks to you for the labour and care you have taken in 'Practical Mechanics.' . . . It is a life's expérience.
What an amount we frequently see wasted by rigging purchases without reason and accidents to spars, \&c., \&c.! 'Practicat Mechanics' would save all rHIs."-(Letter to the Author from another Master Mariner).

WORKS BY RICHARD C. BUCK, of the Thames Nautical Training College, H.M.S. 'Worcester.'

## A Manual of Trigonometry:

 With Diagrams, Examples, and Exercises. Price 3s. 6d. Third Edition, Revised and Corrected.*** Mr. Buck's Text-Book has been spectally prepared with a view to the New Examinations of the Board of Trade, in which Trigonometry is an obligatory subject.
"This eminently practical and reliable volume."-Schoolmaster,

## A Manual of Algebra.

Designed to meet the Requirements of Sailors and others. Second Edition, Revised. Price 3s. 6d.

[^16]***For complete List of Griffin's Nautical Series, see p. 39.
LONDON: CHARLES GRIFFIN \& CO., LIMITED, EXETER STREET, STRAND.

## GRIFFIN'S NAUTICAL SERIES.

Second Edition, Thoroughly Revised and Extended. In Crown 8vo. Handsome Cloth. Price 4s. 6d.

# THE LEGAL DUTIES OF SHIPMASTERS. 

BY

BENEDICT WM. GINSBURG, M.A., LL.D. (Cantab.), of the Inner Temple and Northern Circuit; Barrister-at-Law.
General Contents.-The Qualification for the Position of Shipmaster-The Contract with the Shipowner-The Master's Duty in respect of the Crew : Engagement Apprentices; Discipline; Provisions, Accommodation, and Medical Comforts; Payment of W ages and Discharge-The Master's Duty in respect of the Passengers-The Master' Financial Responsibilities-The Master's Duty in respect of the Cargo-The Master'm Duty in Case of Casualty-The Master's Duty to certain Public Authorities-The Master's Duty in relation to Pilots, Signals, Flags, and Light Dues-The Master's Duty apon Arrival at the Port of Discharge-Appendices relative to certain Legal Matters: Board of Trade Certificates, Dietary Scales, Stowage of Grain Cargoes, Load Line Regulations, Life-saving Appliances, Carriage of Cattle at Sea, \&c., \&c.-Copious Index.
"No intelligent Master should fail to add this to his list of necessary books. A few lines of it may save a lawyer's Fee, besides endless worry."-Liverpool Journal of Commerce.
"Sensible, plainly written, in clear and non-technical language, and will be found of muOn service by the Shipmaster."-British Trade Review.

Second Edition, Revised. With Diagrams. Price 2s. Latitude and Longitude: How to Find them.

By W. J. MILLAR, C.E., Late Secretary to the Inst. of Engineers and Shipbuilders in Scotland.
" Conoisely and clearly written . . . cannot but prove an acquisition to those studying Navigation."-Marine Engineer.
"Young Seamen will find it Handy and USEFUL, SIMPLe and olear." - The Engineer.

## FIRST AID AT SEA.

Third Edition, Revised. With Coloured Plates and Numerous Illustrations, and comprising the latest Regulations Respecting the Carriage of Medical Stores on Board Ship. Price 6s.

# A MEDICAL AND SURGICAL HELP FOR SHIPIMASTERS AND OFFICERS IN THE MERCHANT NAVY. 


*** For Complete List of Griffin's Nautioal Series, see p. 39.
LONDON: CHARLES GRIFFIN \& CO., LIMITED, EXETER STREET, STRAMO.

## GRIFFIN'S NAUTICAL SERIES.

Ninth Edition. Revised, with Chapters on Trim, Buoyancy, and Calculations. Numerous Illustrations. Handsome Cloth, Crown 8vo. Price 7s. 6d.

## KNOW YOUR OWN SHIPx

By THOMAS WALTON, Naval Architect.
Specially arranged to suit the requirements of Ships' Officers, Shipowners, Superintendents, Draughtsmen, Engineers, and Others.
This work explains, in a simple manner, such important subjects as:-Displacement.Deadweight. -Tonnage. - Freeboard. - Moments. - Buoyancy.-Strain.-Structure.-Stab-ility.-Rolling.-Ballasting. - Loading. - Shifting Cargoes. - Admission of Water.-Sail Area.-\&c.
"The little book will be found exceedingly Handy by most officers and officials connected with shipping. . Mr. Walton's work will obtain Lasting success, because of its unique fitness for those for whom it has been written."-Shipping World.

## BY THE SAME AUTHOR.

Steel Ships: Their Construction and Maintenance. (See page 38.)

# Sixteenth Edition, Thoroughly Revised. Large 8vo, Cloth. $p p$. i-xxiv +712 . With 250 Illustrations, reduced from Working Drawings, and 8 Plates. 21s. net. A MANUAL OF MARINE ENGINEERING: 

 COMPRISING THE DESIGNING, CONSTRUCTION, AND WORKING OF MARINE MACHINERY.By A. E. SEATON, M.I.C.E., M.I.Mech.E., M.I.N.A.
General Contents. - Part I.-Principles of Marine Propulsion. Part II. - Principles of Steam Engineering. Part III. - Details of Marine Engines : Design and Calculations for Cylinders, Pistons, Valves, Expansion Valves, \&c. Part IV.-Propellers. Part V.-Boilers. Part VL-Miscellaneous.
"The Student, Draughtsman, and Engineer will find this work the most valuable Handbook of Reference on the Marine Engine now in existence."-Marine Engineer.

Ninth Edition, Thoroughly Revised. Pocket-Size, Leather. 8s. 6d. A POCKET-BOOK OF
MARINE ENGINEERING RULES AND TABLES, FOR THE USE OF Marine Engineers, Naval Arehitects, Designers, Draughtsmen, Superintendents and Others.

By A. E. SEATON, M.I.O.E., M.I.Mech.E., M.I.N.A. AND<br>H. M. ROUNTHWAITE, M.I.Mech.E., M.I.N.A<br>"The best book of its kind, and the information is both up-to-date and reliable."Engineer.

CONDON: CHARLES GRIFFIN \& CO., LIMITED, EXETER STREET, STRAND.

# WORKS BY PROF. ROBERT H. SMITH, Assoc.M.I.C.E., M.I.Mesh.E., M.L.El.E., M.I.Min.E., Whit. Sch., M.Ord.Meiji. <br> THE CALCULUS FOR ENGINEERS AND PHYSICISTS, 

Applied to Technical Problems.<br>WITH EXTENSIVE

OLASSIFIED REFERENCE LIST OF INTEGRALS.
By PROF. ROBERT H. SMITH.
ASSISTED BY
R. F. MUIRHEAD, M.A., B.Sc.,

Formerly Clark Fellow of Glasgow University, and Lecturer on Mathematics at Mason College.
In Crown 8vo, extra, with Diagrams and Folding-Plate. 8s. 6d.
"Pbof. R. H. Smith's book will be serviceable in rendering a hard road as rasy as practicAble for the non-mathematical Student and Engineer."-Athenceum.
" Interesting diagrams, with practical illustrations of actual occurrence, are to be found here in abundance. Thr very complrts classifigd brference table will prove very useful in saving the time of those who want an integral in a hurry."-The Engineer.

## MEASUREMENT CONVERSIONS

(English and French):
43 GRAPHIC TABLES OR DIAGRAMS, ON 28 PLATES.
Showing at a glance the Mutual Conversion of Measurmments in Differknt Units
O! Lengths, Areas, Volumes, Weights, Stresses, Densities, Quantities of Work, Horse Powers, Temperatures, \&c.
For the use of Engineers, Surveyors, Architects, and Contractors. In 4to, Boards. 7s. 6d.
*** Prof. Smith's Conversion-Tables form the most unique and comprehensive collection ever placed before the profession. By their use much time and labour will be saved, and the chances of error in calculation diminished. It is believed that henceforth no Engineer's Office will be oonsidered complete without them.

Pocket Size, Leather Limp, with Giit Edges and Rounded Corners, printed on Special Thin Paper, with Illustrations, pp. i-xii +834 . Price 188. net.
(THE NEW "NYSTROM")

## THE MECHANICAL ENGINEER'S REFERENCE BOOK

A Handbook of Tables, Formulae and Methods for Engineers, Students and Draughtsmen.
By Henry Harrison suplee, B.Sc., M.E.
" We feel sure it will be of great service to mechanical engineers."-Engineering.
LONDON: CHARLES GRIFFIN \& CO., LIMITED, EXETER STREET, STRAND.

# Second Edition. In Large 8vo. Handsome Cloth. 16s. CHEIMISTRY FOR ENGINEERS. 

BERTRAM BLOUNT, and

F.I.C., F.C.S., A.I.C.E.
A. G. BLOXAM, F.I.C., F.C. 8 .

GENERAL CONTENTS.-Introduction-Chemistry of the Chief Materials of Construction-Sources of Energy-Chemistry of Steam-raising-Chemistry of Lubrication and Lubricants-Metallurgical Processes used in the Winning and Manufacture of Metals.
"The anthors have sccceemed beyond all expectation, and have produced a work which should give fresi power to the Engineer and Manufacturer."-The Times.

> By the same Authors, "Chemistry for Manufacturers," see p. 71 General Catalogue.

## THE ELEMENTS OF CHEMICAL ENGINEERING. By

 J. Grossmann, M.A., Ph.D., F.I.C. With a Preface by Sir William Ramsay, K.C.B., F.R.S. In Handsome Cloth. With nearly 50 Illustrations. 3s. 6d. net. [See page 70 General Catalogue.In Demy Quarto. With Diagrams and Worked Problems. 2s. 6d. net.

## PROPORTIONAL SET SQUARES APPLIED TO GEOMETRICAL PROBLEMS.

By Lieut.-Col. THOMAS ENGLISH, Late Royal Engineers.

# Works by WaLTER R. BROWNE, M.A., M.Inst.C.E. <br> THESTUDENT'S MECHANICS: <br> An Introduction to the Study of Foree and Motion. <br> With Diagrams. Crown 8vo. Cloth, 4s. 6d. <br> " Clear in style and practical in method, 'The Student's Mixchanics' is cordially to be recommended from all points of view."-A thenaum. 

## FOUNDATIONS OF MECHANICS,

Papers reprinted from the Engineer. In Crown 8vo, Is.
Demy 8vo, with Numerous Illustrations, 9s.

## FUEL AND WATER:

A Manual for Users of Steam and Water. By Prof. FRANZ SCHWACKHÖFER of Vienna, and WALTER R. BROWNE, M.A., C.E. Grneral Contents.-Heat and Combustion-Fuel, Varieties of-Firing Arrangenents: Furnace, Flues, Chimney - The Boiler, Choice of -- Varieties - Feed-water HeatersSteam Pipes-Water: Composition, Purification-Prevention of Scale, \&c., \&c.
"The Section on Heat is one of the best and most lucid ever written."-Engineer.
LOMDON: CHARLES GRIFFIN \& CO., LIMITED, EXETER STREET, STRAND.

Second Edition, Revised and Enlarged.
With Tables, Illustrations in the Text, and 37 Lithographic Plates. Medium 8vo. Handsome Cloth. 3os.
SEWAGE DISPOSAL WORKS:
A Guide to the Construction of Works for the Prevention of the Pollution by Sewage of Rivers and Estuaries.
By W. SANTO CRIMP, M.Inst.C.E., F.G.S., Late Assistant-Engineer, London County Council.
"Probably the most complete and rest treatise on the subject which has appeared in our language."-Edinburgh Medical Journal.

Beautifully Illustrated, with Numerous Plates, Diagrams, und Figures in the Text. 21s. net.

## TRADES' WASTE:

ITS TREATMENT AND UTILISATION.
A Handbook for Borough Engineers, Surveyors, Arehiteets, and Analysts.
By W. NAYLOR, F.O.S., A.M.Inst.C.E., Chief Inspector of Rivers, Ribble Joint Committee.
Contents.-I. Introduction.-II. Chemical Engineering.-III.-Wool De-greasing and Grease Recovery.-IV. Textile Industries; Calico Bleaching and Dyeing.-V. Dyeing and Calico-Printing.-VI. Tanning and Fellmongery.-VII. Brewery and Distillery Waste.-VIII. Paper Mill Refuse.-IX. General Trades' Waste.-Index.
"There is probsbly no person in England to-day better fltted to deal rationally with such a subject."-British Sanitarian.

In Handsome Cloth. With 59 Illustrations. 6s. net. SMOKE ABETEMENT. A Manual for the Use of Manufacturers, Inspectors, Medical Officers of Health, Engineers, and Others.

## By WILLIAM NICHOLSON, Chief Smoke Inspector to the Sheffield Corporation.

Contents.-Introduction. - General Legislation against the Smoke Nuisance. Local Legislation.-Foreign Laws.-Smoke Abatement.-Smoke from Boilers, Furnaces, and Kilns. - Private Dwelling-House Smoke. - Chimneys and their Construction. Smoke Preventers and Fuel Savers. - Waste Gases from Metallurgical Furnaces. Summary and Conclusions.-Index.
"We welcome such an adequate statement on an important subject."-British Medical Journal.

Second Edition. In Medium 8vo. Thoroughly Revised and Re-Written. 15 s. net.

## CALCAREOUS CEMENTS:

their nature, preparation, and uses.
With some Remanixs upon Cement Testimes.
By GILbert R. REDGRAVE, Assoc. Inst. C.E, Assistant Secretary for Technology, Board of Education, South Kensington, And CHARLES SPACKMAN, F.C.S.
"We can thoroughly recommend it as a first-class investment."-Practical Engineer.
LONDON : CHARLES GRIFFIN \& © $\mathrm{O}_{\mathrm{y}}$, LIMITED, EXETER STREET, STRAND.

# ELECTRICAL ENGINEERING. <br> Second Edition, Revised. In Large 8vo. Handsome Cloth. Profusely Illustrated with Plates, Diagrams, and Figures. 24s. net. <br> <br> CENTRAL ELECTRICAL STATIONS: <br> <br> CENTRAL ELECTRICAL STATIONS: <br> Their Design, Organisation, and Management. 

By CHAS. H. WORDINGHAM, A.K.C., M.Inst.C.E., M. Inst. Mech.E., Late Memb. of Council Inst.E.E., and Electrical Engineer to the City of Manchester ; Electrical Engineer-in-Chief to the Admiralty.

## ABRIDGEDCONTENTS.

Introductory.-Central Station Work as a Profession.-As an Investment.-The Establishment of a Central Station -Systems of Supply.-Site.-Architecture.-Plant.-Boilers Systems of Draught and Waste Heat Economy.-Coal Handling, Weighing, and Storing.The Transmission of Steam. - Generators. - Condensing Appliances. - Switching Gear, Instruments, and Connections.-Distributing Mains.-Insulation, Resistance, and Cost.Distributing Networks.-Service Mains and Feeders. - Testing Mains. - Meters and Appliances.-Standardising and Testing Laboratory.-Secondary Batteries.-Street Lighting. - Cost. - General Organisation - Mains Department. - Installation Department. Standardising Department. - Drawing Office - Clerical Department. - The Consumer. Routine and Main Laying.-Index.
"One of the most valuable contributions to Central Station literature we have had for some time."-Electricity.

In Large 8vo. Handsome Cloth. Profusely Illustrated. 12s. 6d. net.

## ELECTRICITY CONTROL.

A Treatise on Electric Switchgear and Systems of Electric Transmission.
By LEONARD ANDREWS,
Associate Member of the Institution of Civil Engineers, Member of the Institution of Electrical Engineers, \&c
General Principles of Switchgear Design. - Constructional Details - Circuit Breakers or Arc Interrupting Devices.-Automaticaliy Operated Circuit-Breakers.-Alternating Reverse Current Devices. - Arrangement of 'Bus Bars, and Apparatus for Parallel Running. General Arrangement of Controlling Apparatus for High Tension Systems. - General Arrangement of Controlling Apparatus for Low Tension Systems.-Examples of Complete Installations.-Long Distance Transmission Schemes.
"N ot often does the specialist have presented to him so satisfactory a book as this. . . . We recommend it without hesitation to Central Station Engineers, and, in fact, to anyone interested in the subject."-Power.

Large 8vo, Cloth, with 334 Pages and 307 Illustrations. 16s. net. ELECTRICITY METERS

By HENRY. G. SOLOMON, A.M.Inst.E.E.

Contents. - Introductory. - General Principles of Continuous - Current Meters.-Continuous-Current Quantity Meters.-Continuous-Energy Motor Meters.-Different Types.-Special Purposes, i.e., Battery Meters, Switchboard Meters, Tramcar Meters. - General Principles of Single- and Polyphase Induction Meters.-Single-phase Induction Meters.-Polyphase Meters.-Tariff Systems.-Prepayment Meters.-Tariff and Hour Meters.-Some Mechanical Features in Meter Design. -Testing Meters.-Index.
"An earnest and successful attempt to deal comprehensively with modern methods of measuring current or power in electrical installations."-Engineering.

In Large Crown 8vo. Handsome Cloth. Fully Illustrated.

# TELEGRAPHICSYSTEMS, AND OTHER NOTES. 

A Handbook of the Principles on which Telegraphic Practice is Based.

By ARTHUR CROTCH, Of the Engineer-in-Chief's Department, G.P.o.


#### Abstract

Contents. - Batteries, Primary and Secondary. - Morse Systems: Duplex, Diplex, Quadruplex, Multiplex.-Type-Printing Systems: Hughes, Bandot, Murray.-Test and Battery Boxes. - Concentrators. - Intercommunication Systems. - Central Battery Arrangements. - Repeaters, Hughes, Fast Speed, Duplex and Single, Forked: Quadruplex, Forked Quadruplex, Split Quadruplex, and Side Relayed. - Submarine Tele-graphy.-Wireless Telegraphy. - Testing: Wheatstone Bridge, Tangent Galvanometer, Morning Test, \&c.-Protective Devices, \&c.


In Large 8vo. Profusely Illustrated. 8s. 6d. net.

## WIRELESS TELEGRAPHY:

By GUSTAVE EICHHORN, Ph.D.
Contents.-Oscillations.-Closed and Open Oscillation Systems.-Coupled Systems.-The Coupling Compensating the Aerial Wire.-The Receiver.Comparative Measurement in the Sender.-Theoretical Results and Calculations in respect of Sender and Receiver.-Close- and Loose-Coupled Sender and Receiver.-Formulæ.-The Ondameter.-Modern Apparatus and Methods of Working.-Conclusion.-Bibliography.-Index.
"Well written . . . and combines with a good deal of description a careful investigation of the fundamental theoretical phenomena."-Nature.

Eighteenth Edition. Leather, Pocket Size, with 764 pages. 8s. 6d.

# A POCKET-BOOK OF ELECTRICAL RULES \& TABLES 

 FOR THE USE OF ELECTRICIANS AND ENGINEERS. By JOHN MUNRO, C.E., \& Prof. JAMIESON, M.Inst.C.E., F.R.S.F. "Wonderfully Prrpect. . . . Worthy of the highest commendation we can give it."-Electrician.GRIFFIN'S ELECTRICAL PRICE-BOOK: For Electrical, Civil, Marine, and Borough Engineers, Local Authorities, Architects, Railway Contractors, \&c. Edited by H. J. Dowsing. Second Edition. 8s. 6d.

ELECTRIC SMELTING AND REFINING. By Dr. W. Borchers and W. G. McMillan. [See page 67 General Catalogue. ELECTRO - METALLURGY, A Treatise on. By Walter G. McMillan, F.I.C., F.C.S. [See page 67 General Catalogue.
ELECTRICAL PRACTICE IN COLLIERIES. By D. Burns, M.E., M.Inst. M.E.
[See page 56 General Catalogue.

[^17]Third Edition, Revised, Enlarged, and Re-issued. Price 6s. net.
A SHORT MANUAL OF

## INORGANIC CHEMISTRY:

By A. DUPRE, Ph.D., F.R.S.,

And WILSON HAKE, Ph.D., F.I.O., F.C.S., Of the Westminster Hospital Medical School.
"An example of the advantages of the Systbmatic Treatment of a Science over the fragmentary style so generally followed. By A LONG way the best of the small Manuals for Students."-Analyst.

In Handsome Cloth. With nearly 50 Illustrations. 3s. 6d. net.

## THE ELEMENTS OF CHEMICAL ENGINEERING.

By J. GROSSMANN, M.A., Рн.D., F.I.C. with a preface by<br>> Sir WILLIAM RAMSAY, K.C.B., F.R.S.

Contents.-The Beaker and its Technical Equivalents.-Distilling Flasks, Liebig's Condensers.-Fractionating Tubes and their Technical Equivalents.-The Air-Bath and its Technical Equivalents.-The Blowpipe and Crucible and their Technical Equivalents. -The Steam Boiler and other Sources of Power.-General Remarks on the Application of Heat in Chemical Engineering.-The Funnel and its Technical Equivalents.-The Mortar and its Technical Equivalents.-Measuring Instruments and their Technical Equivalents.-Materials Used in Chemical Engineering and their Mode of Application.Technical Research and the Designing of Plant.-Conclusion.-Chemicals and Materials. -Index.
"Excellent. . . Every student of chemistry attending a technical course should obtain a copy. --Chemical News.

## LABORATORY HANDBOOKS BY A. HUMBOLDT SEXTON, Professor of Metallurgy in the Glasgow and West of Scotland Technical Oollege.

## OUTLINES OF QUANTITATIVE ANALYSIS. FOR THE USE OF STUDENTS.

With Illustrations. Fifth Edition. Crown 8vo, Cloth, 3s.
" A compact laboratory guide for beginners was wanted, and the want has been well supplied. . . . A good and useful book."-Lancet.

## OUTLINES OF QUALITATIVE ANALYSIS. FOR THE USE OF STUDENTS.

With Illustrations. Fourth Edition, Revised. Crown 8vo, Cloth, 3s. 6d.
"The work of a thoroughly practical chemist."-British Medical Jourral.
"Compiled with great care, and will supply a want."-Journal of Education.

# ELEMENTARY METALLURGY: <br> Including the Author's Practical Laboratory Course. 

[See p. 66 General Catalogue.

# Criffin's Chemical and Technological Publications. 

Inorganic Chemistry,Analysis,Chemical Engineering,Chemistry,Foods and Poisons,Tables for Chemists,Dairy Chemistry, \&c.,Milk,
Flesh Foods,
Practical Sanitation,
Sanitary Engineering,
Lessons on Sanitation,
Technical Mycology,
Soil Bacteria,Ferments and Toxines,Brewing,Trades' Waste, .
Smoke Abatement,Cements,Water Supply,Road Making,
Gas Manufacture,Acetylene,Fire Risks,Petroleum,-(Handbook),
Ink Manufacture,
Paper Technology,
Glue, Gelatine, \&c., .
Leather,
Oils, Soaps, Candles,
Lubrication \& Lubricants,India Rubber,Painters' Colours, Oils, \&c.,
Painters' Laboratory Guide,Painting and Decorating,Dyeing,Dietionary of Dyes,The Synthetic Dyestuffs,
Spinning,
Textile Printing,Textile Fibres of Commerce,
Dyeing and Cleaning,
Bleaching, Calico-Printing, Geo. Duerr, ..... 4
LONDON : CHARLES GRIFFIN \& CO.. LIMITED, EXETER STREET. STRAND.

# Griffin's Geological, Prospecting, Mining, and Metallurgical Publications. 

general catalogue page
Geology, Stratigraphical, R. Etheridge, F.R.S., ..... 52
Prof. Grenville Oole, ..... 52
Practical Aids,
Open Air Studies, ..... 85Mining Geology,
Prospecting for Minerals,
Food Supply,
James Park, F.G.S., ..... 56
S. Herbert Cox, A.R.S.M., . ..... 53
Robt. Bruce, ..... 53
Ore and Stone Mining, Sir O. Le Nete Foster, ..... 54
Elements of Mining, ..... 54Coal Mining,
H. W. "Huahes, F.G.S., ..... 55
G. L. Kerr, M.Inst.M.E., Practical Coal Mining, ..... 55
Elementary 99
Elect. Colliery Practice, D. Burns, ..... 55
Mine-Surveying, Bennett H. Brough, A.R.S.M., ..... 56
Mine Air, Investigation of, Foster and Haldane, ..... 54
Mining Law,
Blasting and Explosives, O. Guttmann, A.M.I.C.E., . ..... 58C. J. Alford,57
Testing Explosives, Bichel and Larsen, ..... 58
Shaft Sinking, Riemer and Brough, ..... 58
Mine Accounts, Prof. J. G. Lawn, ..... 57
Mining Engineers' Pkt.-Bk., E. R. Field, M.Inst.M.M., ..... 57
Petroleum, Sir Boverton Redwood, ..... 61
A Handbook on Petroleum, Thomson and Redwood, ..... 61Oil Fuel,
Sidney H. North, ..... 61
Mineral Oil Testing, J. Hicks, ..... 61
Metallurgical Analysis, Macleod and Walker, ..... 60
Microscopic Analysis, F. Osmond \& J. E. Stead, F.R.S., ..... 60
Metallurgy (General), Phillips and Bauerman, ..... 60
Prof. Humboldt Sexton, ..... 66
Getting Gold, J. C. F. Johnson, F.G.S., ..... 59
Cyanide Process, James Park, F.G.S., ..... 59
Cyaniding, Julian and Smart, ..... 59
Electric Smelting, Borchers and MoMillan, ..... 67
Electro-Metallurgy, W. G. M ${ }^{\circ}$ Millan, F.I.C., ..... 67
Assaying, J. J. \& C. Beringer, ..... 66
Metallurgical Analysis, J. J. Morgan, F.C.S., ..... 66
Metallurgy (Introduction to), Sir W. Roberts-Austen, K.O.B., ..... 63 ..... 63
Gold, Metallurgy of,
Lead and Silver,
Iron, Metallurgy of,
H. F. Oollins, A.R.S.M., ..... 64Dr. Kiree Rose, A.R.S.M.,
Thos. Turner, A.R.S.M., ..... 65 ..... 65
Steel, F. W. Harbord, ..... 65
General Foundry Practice, M"William and Longmuir, ..... 68Iron-Founding,
Prof. Turner, ..... 68
Precious Stones, Dr. Max Bauer, ..... 68

LONDON : CHARLES GRIFFIN \& CO., LIMITED, EXETER STREET, STRAND.

(


[^0]:    * Called the zenith distance; the point directly overhead being known as the zenith. The figure of the earth is here considered to be that of a true sphere. In reality the polar diameter is a little less than the equatorial diameter.

[^1]:    * This motion is not uniform, and gives rise to corrections for time calculations (see Article 29, p. 33).

[^2]:    * The true altitude is more correctly the observed altitude corrected, not only as above for dip, but also for refraction and parallax.

[^3]:    * A great circle of a sphere is one which has its centre at the centre of the sphere; the equatorial line is a great circle also ; all the meridian or longitude circles are great circles.

[^4]:    * To facilitate these calculations, tables are published which give the time at once opposite the logarithmic sine of half the hour angle, thus saving the latter steps of doubling and reducing to time value

[^5]:    * The sign + is used in this example instead of - as the cosine of 100 $46^{\prime}$ is negative, the angle being greater than $90^{\circ}$; hence, the cosine of $100^{\circ}$ $46^{\prime}$ is the same as cosine of $180^{\circ}-100^{\circ} 46^{\prime}=79^{\circ} 14^{\prime}$. In other words, if we are using the cosine of an angle greater than $90^{\circ}$, we subtract the angle from $180^{\circ}$ and use a negative sign before it. Here we have $180^{\circ}-100^{\circ}$ $46^{\prime}=79^{\circ} 14^{\prime}$, and when we look up in the tables for the corresponding cosine we consider it a negative quantity and not a positive quantity as in former examples.

[^6]:    * Vertical circles are great circles passing throug , the zenith of the observer. The prime vertical is the great circle whose plane lies east and west. Observations for longitude are preferably taken when the sun is in or near some parts of the prime vertical.

[^7]:    "Boys oodld not have a more alluring introduction to selentifle pursuita than these charming-looking volumes."--Letter to the Publishers from the Headmaster of one of our great Public Schools.

    Handsome Cloth, 7s. 6d. Gilt, for Presentation, 8s. 6d,

    # OPEN-AIR STUDIES IN BOTANY: 

    ## SKETCHES OF BRITISH WILD FLOWERS IN THEIR HOMES.

    By R. LLOYD PRAEGER, B.A., M.R.I.A. Illustrated by Drawings from Nature by S. Rosamond Praeger, and Photographs by R. Welch.

    General Contents.-A Daisy-Starred Pasture-Under the Hawthornm -By the River-Along the Shingle-A Fragrant Hedgerow-A Connemara Bog-Where the Samphire grows-A Flowery Meadow-Among the Corn (a Study in Weeds)-In the Home of the Alpines-A City Rubbish-HeapGlossary.
    "A FRESH AND STIMULATING book ,. should take a high place . . . The Illustrations are drawn with much skill."-The Times.
    "Beautifully illustrated. . . . One of the most accurate as well as interesting books of the kind we have seen."-Athenceum.
    "Redolent with the scent of woodland and meadow."-The Standard.

[^8]:    " It would be hard to find a Text-book which would better guide the student to an accurate knowledge of modern discoveries in Botany. . . . The SCIENTIFIC Accuracy of statement, and the concise exposition of FIRST PRINCIPLRS make it valuable for educational purposes. In the chapter on the Physiology of Flowers, an admirable résumé, drawn from Darwin, Hermann Muller, Kerner, and Lubbock, of what is known of the Fertilization of Flowers, is given.". Fournal of Botany.

[^9]:    ** The attention of all interested in the Scientific Training of the Young is requested to this dmhgetpolif prese and charming little book. It ought to be in the hands of every Mother and Teacher throughout the land.
    "The child's attention is first secured, and then, in language simple, ybT scibntipically accurate, the first lessons in plant-life are set before it."-Natural Science.
    "In every way well calculated to make the study of Botany attractive to the young."Scotsman

[^10]:    "A CAPITAL TEXT-BOOK, arranged on an EXCBLLBNT sYstem, calculated to give an intelligent grasp of the subject, and not the mere faculty of mechanical copying. . . Mr. Wells shows how to make COMPLBTR WOREING-DRAWINGS, discussing fully each step in the design. "-flectrioal Review

[^11]:    "No more enduring Memorial of Professor Rankine could be devised than the publica tion of these papers in an accessible form. . . . The Collection is most valuable o account of the nature of his discoveries, and the beauty and completeness of his analysis " -Architect.

[^12]:    "By the 'one English Engineer who probably knows more about Pumping Machinery than $\operatorname{ANY}$ other.'
    a volume regordisg the bestlis of long experienoe and studY."-The Engiueer.
    "Undoubtedly the best and most practioal treatise on Pumping Machinery that has fet been published."一Mining Journal.

[^13]:    "Sir Edward Reed's 'Stability of Ships' is invaluable. The Naval Architmct will find brought together and ready to his hand, a mass of information which he would othorwise have to seek in an almost endless variety of publications, and some of which he would possibly not be able to obtain at all elsewhere."-Steamship.

[^15]:    "This admirable series."-Fairplay. "A very useful series."-Nature.
    "Every Ship should have the whole Series as a Reference Library. Hand. somely bound, clearly printed and illustrated."-Liverpool Journ. of Commerce.

[^16]:    ** These elementary works on alaebra and trigonometry are written specially for those who will have little opportunity of consulting a Teacher. They are books for "gely HRLP." All but the simplest explanations have, therefore, been avoided, and answers te the Exercises are given. Any person may readily, by careful study, become master of theicontents, and thus lay the foundation for a further mathematical course, if desired. It is hoped that to the younger Officers of our Mercantile Marine they will be found decidedly nerviceable. The Examples and Exercises are taken from the Examination Papers set for the Oadets of the "W orcester,"
    "Olearly arranged, and well got up. . . . A first-rate Elementary Algebra." Nautical Magazine.

[^17]:    LONDON: CHARLES GRIFFIN \& CO., LIMITED, EXETER STREET, STRAND.

